Avalanche FRAC3® Nd:YAG Laser Hair Removal

Abdelhakim Eltarky¹, Marko Kazić², Matjaz Lukac²
¹ Egypt Dream Inc, Laser Research Dept., Cairo, Egypt
² Fotona d.d., Stegne 7, Ljubljana, Slovenia

ABSTRACT

An “avalanche effect” was observed where the absorption of laser light in hair gets increasingly enhanced following each successively delivered laser pulse. The avalanche process continues until the absorption becomes high enough for the hair to get carbonized. The avalanche effect was found to be most pronounced with the FRAC3® Nd:YAG laser parameters.

Based on the results of the study, a new, “avalanche” FRAC3® Nd:YAG laser hair removal protocol is introduced that improves the efficacy of current hair-removal procedures, reduces patient discomfort and in most cases eliminates the need for skin cooling. For patients from the Middle East, in particular, the new “avalanche” FRAC3® Nd:YAG laser hair-removal protocol provides effective yet completely pain-free hair removal with no external cooling required.

Key words: laser hair removal; VSP technology, Nd:YAG lasers, FRAC3 hair removal

I. INTRODUCTION

a) Long Pulse Nd:YAG Hair Removal

Laser hair removal has in recent years received wide clinical acceptance, in both medical and aesthetic settings, because of its long-term results, non-invasive nature, minimal treatment discomfort, and the speed and ease with which procedures can be performed [1-2]. Commercial laser systems differ in wavelength, pulse duration, fluence, laser beam delivery system and skin cooling method; all of which have an effect on the outcome of the treatment [3].

The choice of wavelength is dictated by the need for good absorption of the laser energy in the hair follicle lying deep in the skin. Typically, however, the wavelengths that are highly absorbed in skin imperfections are also highly absorbed by non-target structures, for example, melanosomes or hemoglobin containing RBC [5]. Consequently, these wavelengths do not reach deeper-lying hair follicles, and can result in excessive damage to the epidermis and other skin structures. For this reason, it is better to select a laser wavelength that penetrates more deeply into the tissue, and then achieve selective tissue modification by adjusting the laser pulse duration to the thermal relaxation time of the targeted hair. A wavelength that fits this requirement is produced by the Nd:YAG laser. Its long wavelength of 1064 nm lies in an optical absorption window that allows light at this wavelength to penetrate deeply into the skin, while its absorption in the hair follicle is strong enough to destroy the follicle [6-8]. The Nd:YAG laser has been cleared for hair removal (i.e., stable long-term or permanent hair reduction) for all skin types, Fitzpatrick I-VI, including tanned skin [9-10]. Standard Nd:YAG hair removal procedures are performed with “long pulse” (LP) parameters, typically in the range of 15-50 ms [6-15]. Clinical experience using LP Nd:YAG parameters has demonstrated that hair removal with LP Nd:YAG lasers is one of the safest and most effective methods for light-based hair removal [9-15].

b) FRAC3® Hair Removal

Longer pulse (LP) durations of the Nd:YAG laser have been used with a goal to minimize damage to the epidermis [6-8]. Longer pulse durations have been at least partially mandated also by technological limitations. Namely, large spots require high pulse energies, which laser systems have not been able to deliver reliably at short pulse durations.

However, recent technological advances and better understanding of the thermal dynamics during laser hair removal have led to a further improvement of the already very effective LP Nd:YAG hair removal technique.

It has been demonstrated that successful permanent unwanted hair reduction can only be achieved by injuring the bulb, the bulge and the outer root sheath of the hair follicle [1, 2, 4]. In order to destroy the targeted hair tissue and to avoid damage to surrounding tissue, the laser pulse duration (width) should be lower or approximately equal to the hair tissue’s thermal relaxation time (TRT). This applies even more so when treating patients with thinner and lighter hair, where the TRT and the absorption in hair follicles are the lowest.
One of the advantages of the latest technology Nd:YAG laser devices lies in their advanced variable square pulse technology (VSP) [16], which enables the temporal delivery of sufficiently high laser energy in shorter time periods than the thermal relaxation time (TRT) of skin imperfections or hair. Exploiting the Nd:YAG VSP’s unique capabilities, an advanced, FRAC® [17], non-ablative fractional laser method was developed [18-20] that produces a self-induced fractional thermal damage matrix within the skin tissues. The method utilizes the fractional nature of the selective photo-thermolysis at short laser pulse durations, and has been found to be extremely suitable for performing hair removal treatments [20].

The FRAC® hair removal method differs from the standard, LP Nd:YAG hair removal method. While standard LP treatments are performed with laser pulse durations within the 15-50 ms range, the FRAC® method is optimized to deliver the laser energy in extremely short times, less than 2 ms, and preferably between 0.3 and 1.6 ms. The method is based on a finding that the thermal relaxation time of the epidermis is relatively long [20]. The epidermal TRT is typically longer than 25-50 ms, while the target hair’s TRT is typically shorter than 2 ms [22]. The duration of the FRAC® high intensity laser pulses is thus sufficiently short for most hair types while still avoiding unnecessary damage to the epidermis (See Fig. 1).

![Fig. 1: A situation commonly found in patients. Epidermal peak temperature is independent of whether a short, FRAC® pulse (< 2ms), or a long, standard (15-50 ms) laser pulse is used, however, the hair follicle gets heated only at shorter, FRAC® laser pulse durations. The figure is reprinted with permission from reference #20.](image)

The thermal dynamics shown in Fig. 1 is confirmed also by the measured dependence of the feeling of pain on laser pulse duration when a patient’s skin is irradiated by the Nd:YAG laser. As can be seen from Fig. 2, the pain threshold (defined as the Nd:YAG laser fluence when the patient reports pain) is approximately independent of the pulse duration in the broad range of 0.3 – 25 ms [20].

![Fig. 2: Measured dependence of the feeling of pain, i.e. of the pain threshold fluence, on the Nd:YAG laser pulse duration. The figure is based on data from reference #20.](image)

This can be explained as follows. Since the TRT of the epidermis is longer than 25 ms, no significant cooling of the epidermis can occur during laser pulses shorter than 25 ms. All pulses below 25 ms thus result in the same peak temperature of the epidermis and consequently the same discomfort for the patient.

On the other hand, the hair damage threshold depends significantly on laser pulse duration, and is much lower for shorter pulse durations (See Fig. 3).

![Fig. 3: Measured dependence of the hair damage threshold (defined by the lowest fluence at which visible hair damage occurs) on the Nd:YAG laser pulse duration. The figure is based on data from reference #20.](image)

As demonstrated by Figs. 2 and 3, hair removal is much more effective at FRAC® laser pulse conditions, while still not causing unnecessary damage to the epidermis.
The new, improved hair removal parameters based on the FRAC3® self-induced 3-dimensional fractional concept are summarized in Table 1 below. Note that these parameters represent a rough guideline only. Clinical treatment parameters depend also on the selected FRAC3® pulse duration and on the patient’s hair type, as will be shown later in the paper.

Table 1: Recommended FRAC3® Nd:YAG laser hair removal parameters (based on data from reference #20).

<table>
<thead>
<tr>
<th>Spotsizes</th>
<th>Mode</th>
<th>Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm</td>
<td>FRAC3</td>
<td>Skin type I, II: (\leq 55 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type III, IV: (\leq 40 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type V, VI: (\leq 30 \text{ J/cm}^2)</td>
</tr>
<tr>
<td>6 mm</td>
<td>FRAC3</td>
<td>Skin type I, II: (\leq 45 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type III, IV: (\leq 30 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type V, VI: (\leq 25 \text{ J/cm}^2)</td>
</tr>
<tr>
<td>9 mm</td>
<td>FRAC3</td>
<td>Skin type I, II: (\leq 40 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type III, IV: (\leq 25 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type V, VI: (\leq 25 \text{ J/cm}^2)</td>
</tr>
<tr>
<td>12-15 mm</td>
<td>FRAC3</td>
<td>Skin type I, II: (\leq 40 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type III, IV: (\leq 30 \text{ J/cm}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type V, VI: (\leq 20 \text{ J/cm}^2)</td>
</tr>
</tbody>
</table>

Our clinical studies have demonstrated the improved hair removal efficacy of the FRAC3® procedure in comparison with the standard, LP Nd:YAG laser protocol. As an example, Figs. 4 and 5 show a patient’s back that was treated on the left side with LP and on the right side with FRAC3® parameters.

Fig. 4: A male patient’s back (age 26; skin: Fitzpatrick II; hair: dark, medium) was treated on the left side with LP parameters (25 ms, 50 J/cm²), and on the right side with FRAC3® parameters (1.6 ms, 50 J/cm²). The Nd:YAG laser used was an SP Dynamis (manufactured by Fotona), with a 9 mm spot-size S11 scanner.

Fig. 5: Treated areas of the patient’s back: before, immediately after, and 36 days after the first treatment. Left side: standard LP Nd:YAG parameters. Right side: FRAC3® Nd:YAG parameters. The right, FRAC3® side shows improved hair removal efficacy.

Similarly, Fig. 6 shows a female’s under-arms treated with either LP or FRAC3® hair removal parameters. Again, the FRAC3® approach resulted in a higher efficacy.

Fig. 6: Patient’s underarms before and 32 days after the first hair removal treatment at 55 J/cm² with either LP Nd:YAG parameters (above) or FRAC3® Nd:YAG parameters (below). The Nd:YAG laser used was an XP Dynamis (manufactured by Fotona), with a 3 mm spot-size S11 scanner.
A clinical example of the excellent long-term results of the FRAC3® hair removal method is shown in Fig. 7.

![Before treatment](image1)

![46 days after treatment](image2)

![81 days after treatment](image3)

![122 days after treatment](image4)

Fig. 7: A patient’s arm (female 29, skin: Fitzpatrick II; hair: light brown, thin) following a single treatment with Nd:YAG FRAC3® parameters (1.6 ms, 50 J/cm²). The Nd:YAG laser used was an SP Dynamis (manufactured by Fotona), with a 9 mm spot-size S11 scanner.

b) Avalanche FRAC3 Hair Removal

One of the challenges when performing laser hair removal is the relatively low absorption of laser light in the treated hair, especially when the hair is blond or grey. For this reason, early hair removal techniques were based on infiltrating black carbon into hair ducts in order to increase the absorption of hair at the treatment laser wavelength [23].

However, carbonization of the hair also occurs naturally when it is irradiated by a laser power density above its damage threshold (See Fig. 8).

![a) Before](image5)

![b) After: 15 ms, 35 J/cm²](image6)

![c) After: 0.3 ms, 35 J/cm²](image7)

Fig. 8: a) Hair before laser irradiation; b) Hair irradiated with long-pulse Nd:YAG; no visible change is observed; c) Hair irradiated with FRAC3® Nd:YAG pulse; the hair is carbonized and blackened. Figure is reprinted with permission from reference #20.

This suggests that perhaps the absorption of laser light in hair could be enhanced by the treatment laser light itself. Namely, by delivering the treatment energy to the same skin area several times during the same session, the hair absorption might increase following each delivery. This would lead to an avalanche in the hair temperature changes, resulting in effective hair removal even at lower laser parameters than those required when a single-delivery hair removal is performed. The FRAC3® laser parameters that exhibit the lowest hair damage thresholds (See Figs. 3 and 8) are especially suited for this purpose.

In this paper, we report on a study of the avalanche effect from the multiple delivery of laser energy during
a single hair-removal session. An improved, “avalanche” FRAC3® hair removal method is introduced which offers a more effective and comfortable approach to laser hair removal.

II. MATERIALS AND METHODS

The experimental set-up is shown in Fig. 9.

![Experimental set-up](image)

Fig. 9: Experimental set-up. A human hair was pulled out of a human scalp and fixed in the air in a straight horizontal position. The Nd:YAG laser beam was directed onto the hair, and the resulting hair temperature increase was measured with a thermal video camera.

The Nd:YAG laser used in the study was an SP Dynamis (manufactured by Fotona) fitted with an R33 handpiece set to a 6 mm laser spot size. A human hair was pulled out of a human scalp and fixed in the air in front of the laser handpiece. The Nd:YAG laser beam was directed onto the hair, and the resulting hair temperature increase was measured with a thermal video camera (Flir ThermaCAM P45), set to record at every time instant the maximum temperature of the hair sample. The camera detector’s signal integration time was approximately 10 ms. Therefore, for pulses shorter than 10 ms, and especially for higher temperatures, the peak hair temperatures were measured to be somewhat lower than actual. For this reason, most of the data is analyzed in terms of the relative ratio of temperature data points.

A typical thermal image of the irradiated hair following a laser pulse is shown in Fig. 10.

![Thermal image](image)

Fig. 10: A typical thermal image of the irradiated hair following an Nd:YAG laser pulse.

When several consecutive laser pulses were delivered to the same spot, the pulses were delivered at a slow rate of 0.5 Hz, which was sufficiently slow to allow the hair to cool down to its initial temperature during the time between pulses.

In order to minimize the influence of the hair diameter on the results, sets of measurements were performed on limited sections of long hair samples pulled out of a human scalp. Each measurement was also made on a different section of the tested hair in order to avoid any influence from previous irradiations.

III. RESULTS

Figure 11 shows a typical hair temperature increase following three subsequent laser pulses with the same fluence per pulse.

![Graph](image)

Fig. 11: Typical measured hair temperature during three consecutively delivered FRAC3® Nd:YAG laser pulses of the same a) low; or b) high single-pulse fluence. Note that for high-fluence pulses, the temperature increase starts to grow with each subsequent laser pulse.

As can be seen from Fig. 11, at low laser fluences, all pulses result in the same hair temperature increase, ΔT. However, at sufficiently high laser pulse fluences, the absorption of laser light, and consequently ΔT, begin to increase with each subsequently delivered laser pulse. We call this phenomenon a heating avalanche effect, and the fluence above which this effect occurs, the avalanche threshold fluence.

The heating avalanche effect can be observed by applying a sequence of consecutive laser pulses of the same above-threshold fluence to a hair sample. Figure 12 shows the measured temporal evolution of the avalanche factor for two types of tested hairs (Hair #1 and Hair #2) during a sequence of consecutively delivered laser pulses with the same fluence per pulse. The avalanche factor, α is defined as the ratio of the temperature changes following the Nth and 1st delivered laser pulse, $\alpha = \frac{\Delta T_N}{\Delta T_1}$.

Avalanche FRAC3 Nd:YAG Laser Hair Removal
We believe that the three hair samples used were good representatives of the black (Hair #1), brown (Hair #2) and light brown (Hair #3) hair types. Based on Fig. 14, the two-pulse “run-off” threshold fluences for the three hair types are from black to light brown...
at approximately 20, 50 and 70 J/cm², respectively.

A comparison was also made between the LP and FRAC® hair removal parameters in terms of the achieved hair temperature increase and avalanche factor. Figure 15 shows the measured temperature changes during a sequence of three pulses with the same fluence of 15 J/cm² per pulse, with either LP or FRAC® pulse duration characteristics.

The FRAC® laser parameters are clearly at an advantage in comparison to the LP parameters. The FRAC® laser parameters result in considerably larger temperature changes and avalanche factors. Note that the advantage of the FRAC® parameters becomes even more pronounced under the actual hair removal conditions. Since the treated hairs are located within the skin matrix which has a much larger thermal conductivity than air, the hairs cool down considerably faster during an LP pulse than during a FRAC® pulse, reducing further the efficacy of the LP protocol.

IV. DISCUSSION

Our thermal camera measurements demonstrate an avalanche “hair darkening” effect which occurs when hair is subjected to a series of laser pulses. This effect leads to an enhancement of laser absorption and therefore to a progressively larger temperature increase. Note that this enhancement is not a consequence of a temperature build-up during the consecutive pulse delivery. The enhancement can be observed also when pulses are delivered at very long inter-pulse intervals.

Based on the results of our study, laser hair removal treatments can be performed at laser fluences much lower than what has been considered as required to affect hair growth. By repeating the treatment irradiation within the same treatment session, the effect of each irradiation gets enhanced, until the hair removal temperatures within the hair bulb, the bulge and the outer root sheath of the hair follicle are reached.

The enhancement of the laser absorption from pulse to pulse (“the avalanche factor”) depends on the hair type, and on the laser parameters such as laser pulse duration and fluence. The FRAC® parameters were found to be more effective than standard, LP (Long Pulse) parameters for obtaining the avalanche effect.

Even though our temperature measurements were carried out on hairs suspended in air, the obtained avalanche and carbonization fluence thresholds apply approximately also to the hair located within the skin matrix. Figure 16 depicts graphically an approximate relationship between the treatment laser fluence as exiting the laser handpiece, and the resulting fluence after the laser light enters the skin.

Fig. 16: Graphical representation of the relationship between the treatment laser fluence before entering the skin and the resulting fluence within the skin.

As a result of back scattering of the laser light within the skin matrix, the fluence inside of the skin is actually higher than the fluence of the incoming beam within the first 2-3 mm from the skin’s surface, in spite of the beam being progressively absorbed by the skin chromophores. Therefore, on average, the fluence that is affecting the hair bulb, the bulge and the outer root sheath of the hair follicle can be considered to be approximately the same, or even higher, than that of the incoming beam.

When performing laser hair removal, what is desired is high treatment efficacy for all skin and hair types, with as little as possible discomfort for patients. With this in mind, we introduce an improved “Avalanche” FRAC® hair removal protocol (See Fig. 17).
The following starting test procedure has been recommended when performing FRAC3® hair removal treatments [20]. Before performing the treatment, the hair from the treatment area is to be irradiated with increasingly higher laser fluences until visible hair damage is observed. To avoid discomfort to the patient, this procedure can be performed, for example, on hair which has been cut or shaven off from the area to be treated. Using this procedure, the practitioner determines the laser fluence where the carbonization of the patient’s hair occurs (i.e., the carbonization threshold fluence). It is important that during this procedure the same hair segment is not irradiated with more than one laser pulse, as the avalanche effect will cause the measured fluence threshold to be too low.

When performing the single pass FRAC3® hair removal protocol the practitioner would set the laser fluence at or above the measured value for the carbonization threshold, in order for the treatment to be effective. For example, when treating hair types with avalanche characteristics as shown in Fig. 14, the patients with hair types #1, #2 and #3 would have to be treated with fluences of at least 20 J/cm², 50 J/cm², and 70 J/cm², correspondingly. Note that especially for the patient with the #3 type hair, the treatment fluence would be considerably above the pain threshold (See Fig. 2) and may also be excessive from the viewpoint of treatment safety. Treatments of patients with #2 and #3 type hairs would also require skin cooling.

With the new “Avalanche” FRAC3® protocol, the practitioner would take a different approach.

Firstly, when a better efficacy is desired, and the carbonization threshold is not excessively high, the practitioner would treat the hair with more than one pass. The time over which the passes are to be repeated during a single session is not important, and can be over several hours. However, they should be separated by at least 250 ms in order to allow the epidermis to cool down in between the passes. And, in order to benefit from the hair temperature increase following a previous pass, the next pass should be preferably delivered within 0.5 - 5 seconds from each other in order not to let the bulk skin to cool down considerably.

On the other hand, when treatment safety (for example when the measured carbonization fluence is very high) and/or the patient’s comfort are of concern, then the avalanche FRAC3® approach would be as follows. The practitioner would reduce the treatment fluence to a value below the carbonization threshold, and optionally also below the patient’s pain threshold. The patient would then have to get treated with an appropriate number of passes over the treatment area. Of course, the fluence should not be reduced to a value where no significant avalanche effect occurs. For example, when performing only 2-3 passes, a #2 hair type patient would have to be treated with a fluence of 30-35 J/cm², while a #3 hair type patient would require a higher fluence of approximately 50 J/cm². Lower treatment fluences would require a larger number of passes. In fact, any fluence above the avalanche threshold would affect hair growth providing that a correspondingly sufficient number of pulses are delivered to the treatment area. A gradual pass-to-pass decrease of fluence, and/or an increase in pulse duration may also be employed in order to avoid the cumulative bulk skin temperature build-up at higher repetition rates, or the loss of thermal contact of the hair with surrounding cells.
Based on the above, effective pain free Nd:YAG laser hair removal, without any skin cooling, is now available using the new avalanche FRAC3® protocol. This applies especially to patients with the #1 type hair, what is typical, for example, for patients from the Middle East. As demonstrated in clinical use, for this segment of patients, hair removal can be performed painlessly and without cooling by treating their hair with 2-3 passes within a single treatment session, using the avalanche FRAC3® fluence parameters of 15 J/cm² per pulse, and spot sizes of 9-15 mm.

V. CONCLUSIONS

An avalanche effect was observed where the absorption of laser light in hair is increasingly enhanced following each successively delivered laser pulse [25]. The avalanche process continues until the absorption becomes high enough for the hair to get damaged. The avalanche effect was found to be most pronounced with the FRAC3® Nd:YAG laser parameters.

Based on the results of the study, a new “Avalanche” FRAC3® Nd:YAG laser hair removal protocol has been introduced that improves the efficacy of current hair-removal procedures, reduces patient discomfort, and in most cases eliminates the need for skin cooling. For patients from the Middle East, in particular, the new “avalanche” FRAC3® Nd:YAG laser hair-removal protocol provides effective yet completely pain-free hair removal with no external cooling required.

Acknowledgment

This research was carried out in a collaboration with the EU regional Competency Center for Biomedical Engineering (www.bmecenter.com), coordinated by the Laser and Health Academy (www.laserandhealthacademy.com), and partially supported by the European Regional Development Fund and the Slovenian government.

REFERENCES

16. Variable Square Pulse (VSP) is a Fotona d.d. (www.fotonoma.com) proprietary technology for the generation and control of laser pulses.
17. FRAC3® is a Fotona trademark for the self-induced three-dimensional fractional approach to skin treatment.
25. After the submission of this paper, research results on the same topic were reported also by Diezicker C, Ross V, Childs J, Perchuk I, Smirnov M, Yaroslavsky I, Smotrich M, Alshuler G, Increasing hair absorption of light in situ by light, Lasers in Surg Med 45, Issue Supplement 25 (March 2013); pp 36.

The intent of this Laser and Health Academy publication is to facilitate an exchange of information on the views, research results, and clinical experiences within the medical laser community. The contents of this publication are the sole responsibility of the authors and may not in any circumstances be regarded as official product information by the medical equipment manufacturers. When in doubt please check with the manufacturers whether a specific product or application has been approved or cleared to be marketed and sold in your country.