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ABSTRACT  

Photobiomodulation (PBM) has been used in 
clinical practice for more than 40 years and its action 
mechanisms on the cellular and molecular levels have 
been studied for about 30 years.  

Little is known about the use of Nd:YAG for 
biomodulation. The aim of this study is to present a 
series of case reports on dental and medical 
applications of a new flat-top handpiece for Nd:YAG. 
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I. INTRODUCTION 

Photobiomodulation (PBM) is the term applied to 
the manipulation of cellular behavior using low intensity 
light sources and works on the principle of inducing a 
biological response through energy transfer [1]. PBM 
has been used in clinical practice for more than 40 years 
and its mechanisms of action at the cellular and 
molecular levels have been studied for about 30 years 
[2]. Photonic energy delivered into the tissue modulates 
biological processes within that tissue and within the 
biological system of which that tissue is a part [3]. It is 
generally accepted [4,5] that the mitochondria of 
eukaryotic cells are the initial absorption sites for laser 
radiation in the visible-to-near IR optical region and 
cytochrome c oxidase is the responsible photoreceptor. 

The most frequently used mechanism of photon 
energy conversion in laser medicine is heating. Very 
significant heating of irradiated samples occurs with all 
methods of tissue destruction (cutting, vaporization, 
coagulation, ablation), but at low-light intensities the 

photochemical conversion of the energy absorbed by a 
photoreceptor prevails. So, in order to produce 
photobiomodulation, it is necessary to keep the thermal 
increase under control and avoid a thermal increase of 
more than 4-5 degrees [6]. 

In clinical applications, photobiomodulation has 
been used to successfully induce wound and bone 
healing [7,8,9,10], pain reduction and [11] anti-
inflammatory effects [12,13,14]. 

With regard to the wavelength of lasers, little is 
known about the use of the neodymium-doped yttrium 
aluminum garnet (Nd:YAG) as a biostimulator. Most 
investigations have centered on the use of laser energy 
in the range from 400 nm to 980 nm. In this range of 
wavelengths, photons can penetrate effectively to reach 
deeper structures. Nd:YAG, at a wavelength of 1064 
nm, is near this window and exhibits some advantages. 
In terms of penetration of the radiation, longer 
wavelengths, such as the (infrared) diode laser or 
Nd:YAG laser, penetrates deeper, whereas laser energy 
with a shorter wavelength, such as red light produced 
using the He–Ne laser, penetrates less deeply [15].  

Recently Gutknecht et al. [16] demonstrated that 
low-level Nd:YAG laser therapy accelerates the wound 
healing process by changing the expression of PDGF 
and bFGF, genes responsible for the stimulation of 
the cell proliferation and fibroblast growth, whereas 
there were no statistically significant differences 
among the groups using other laser wavelengths (660 
nm, 810 nm, 980 nm). 

Significant effort has been made to clarify 
parameters of deposited energy density that will 
effectively promote positive change in individual cells 
while avoiding negative effects. Karu observed that high 
fluences cause destruction of photoreceptors, which is 
accompanied by growth inhibition and cell lethality [17]. 
Other researchers have also demonstrated that 
irradiation with fluences higher than 10 J/cm2 damages 
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DNA [18,19]. Finally, Bensadoun suggested the optimal 
dose in the range of 2–3 J/cm2 for prophylaxis and not 
more than 4 J/cm2 for therapeutic effects and the 
application of a single spot on a lesion rather than a 
scanning motion over the entire lesion [20]. The World 
Association of Laser Therapy (WALT) has stated that 
applying energy in the range from 3 J/cm2 to 10 J/cm2 
will promote effective biostimulation while avoiding 
bio-inhibitory effects. [21] 

While this range of energy density seems well 
documented, achieving this goal is problematic. The 
energy must reach target cells at this level to be 
effective. A method of delivering photons to a group of 
individual cells, often deep within a tissue mass, in a 
uniform and predictable manner has been lacking. Laser 
energy density and distribution at the tissue surface is a 
poor predictor of deeper tissue distribution.  

Several problems complicate the adoption of a 
standardized protocol. While the biostimulatory effect 
of laser energy is experienced on a cellular level, the 
energy is applied macroscopically to large volumes of 
tissue in a non-uniform manner. As energy passes 
through tissue, part of it is absorbed so each 
successive depth of cells is irradiated differently. Beers 
law is usually used to define this relationship. 
However, this is inadequate since the dominant form 
of interaction at wavelengths between 600 nm and 
1400 nm is scattering [22]. Thus as energy enters 
tissue, its density decreases rapidly.  

The output of most clinical lasers is Gaussian in 
profile. Therefore, cells directly in the center of the 
beam are irradiated at a very high fluence, while those 
on the periphery of the incident beam receive a very 
low dose. As a result, cells at the beam center may be 
overstimulated far above the scientifically 
recommended range of 3-10 J/cm2 and therefore 
inhibited, while those on the periphery receive 
insufficient cellular energy to produce any effect. 

Further complicating the goal of standardization is 
the issue of beam divergence. Fiber delivered laser 
energy exits the fiber with a significant divergence, 
usually on the order of 8 degrees. The applied energy 
is, therefore, distributed over an increasing area as the 
tip-to-tissue distance increases, dramatically affecting 
energy density at a cellular level. At currently reported 
beam divergences, energy density can be diminished 
by 90 percent with only 3 millimeters of tip-to-tissue 
distance. This makes the repeatable application of an 
appropriate energy density extremely technique-
sensitive and operator-sensitive. 

As a result of these problems, a new handpiece was 

developed that provides homogeneous irradiation over a 
1 cm2 surface and has the same irradiation area (spot 
size) from contact up to 135 cm of distance from the 
target tissue. With the introduction of a new flattop 
handpiece [14], it is now possible to irradiate a target 
surface with homogenous energy density, using relatively 
high power densities, in less time and without any risk of 
thermal damage. This would make the application 
repeatable and not operator sensitive [14,23]. 

The aim of this study is to present a preliminary 
clinical report on dental and medical applications of a 
new flat-top handpiece for Nd:YAG (Genova™ 
handpiece-Fotona-Slovenia), according to the therapeutic 
protocols described in Benedicenti’s textbook [24]. 

Clinical parameters were determined following 
recently published research protocols [23,25]. The 
MSP modality with a power of 0.5 W, 10 Hz with an 
application every other day produced the best results 
in terms of endogenous ATP production. 

II. MATERIALS AND METHODS 

a) Case 1: Wound healing 
Abscess of the left mandible on a cat. 

The irradiation protocol was: one session every 
other day for 8 applications using the Genova™ 
handpiece (Nd:YAG flat-top) at 0.5 W, 10 Hz in MSP 
modality, one minute per point with 5 points of 
irradiation: 4 points on the peripheral area and 1 in the 
center of the lesion (Fig. 1-5). 
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Fig. 1-5: Abscess of the left mandible on a cat 

b) Case 2: Wound healing in human patient 
In case of aphthous lesions, one or two laser 

applications would immediately give relief from pain 
and promote fast healing. 

The parameters are: Genova™ handpiece 
(Nd:YAG flat-top) at 0.5 W, 10 Hz in MSP modality, 
1 minute per spot (1 cm2) (see Figs. 6 and 7). 

 
Fig. 6-7: Wound healing in human patient 

c) Case 3: Mucosa and bone healing (courtesy of 
Dr. Luca Lancieri) 
For extractions, the Genova™ handpiece 

(Nd:YAG flat-top) can be used to speed up the 
mucosa and bone healing process (Figs. 8-12). After 
the surgery the area is irradiated with the same 
parameters: 0.5 W, 10 Hz in MSP modality, 60 
seconds per 1 cm2 from the buccal and occlusal side, 
for five sessions every other day. The post-operative 
pain and swelling is reduced, and after only two 
months, the final X-ray shows good bone healing 
(Figs. 13 and 14). 
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Fig. 8-12: Mucosa and bone healing process.  

 
Fig. 13-14: Bone healing after two months.  

d) Case 4: Pain reduction and implant 
osseointegration (courtesy of Dr. Alberto 
Rebaudi) 
In this case involving an immediate post-extractive 

implant, the laser has been used to reduce post-operative 
pain, swelling and to speed up the osseointegration of the 
implant as suggested by Ebrahimi [25]. 

The clinical situation before the surgery is shown in 
Figs. 15, 16. After the surgery (Figs. 17-19) the area is 
irradiated with the same parameters (0.5 W, 10 Hz in 
MSP modality, 60 seconds per 1 cm2 from the buccal 
and occlusal side, for five sessions every other day.  

 

 
Fig. 15, 16: The clinical situation before the surgery  

 
Fig. 17-19: After the surgery 
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The follow up after two months shows an 
acceptable osseointegration of the implant (Fig. 20) 
that increases after six months (Fig. 21). 

 
Fig. 20, 21 

e) Case 5: Pain reduction and anti-inflammatory 
effect 
The patient, after a horsefly bite, presented a severe 

pain and swelling (Fig. 22). After three sessions every 
other day with the Genova™ handpiece (Nd:YAG 
flat-top) with the following parameters: 0.5 W, 10 Hz 
in MSP modality, 60 seconds per 1 cm2 (following the 
scheme presented in Fig. 23), the patient reported no 
pain and a significant reduction in swelling (Fig. 24). 

 

 
Fig. 22-25: Improvement after three sessions every other 
day 

f) Case 6: Pain reduction  
The patient had a previous anterior cruciate 

ligament surgery with residual swelling, reduced 
mobility and pain (Fig. 25). 

 
Fig. 25 

The laser irradiation was performed every other 
day with the Genova™ handpiece (Nd:YAG flat-top) 
0.5 W, 10 Hz in MSP modality, 60 seconds per 1 cm2 
and six points of irradiation (Fig. 26). 

 
Fig. 26: Six points of irradiation 
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Fig. 27: The result after 14 days / 7 applications 

III. CONCLUSIONS 

Within the limitations of this study, it can be 
concluded that: 

1) Nd:YAG laser, because of its high penetration, 
seems to be an ideal wavelength for biomodulation. 

2) With the Genova™ flat-top handpiece, the 
irradiation is distributed homogenously compared to a 
conventional defocused handpiece with a Gaussian 
profile, while using relatively high power densities in 
less time and without any risk of thermal damage if 
proper parameters are used. 

3) The homogeneous irradiation is distributed over 
a 1 cm2 surface, from contact up to 135 cm of 
distance from the target tissue. This would make the 
application repeatable and not operator-sensitive. 
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