The Future of Dental Lasers is Now
Dentistry has entered a new era

In proclaiming 2015 as the International Year of Light and Light-based Technologies, the UN has recognized the importance of raising global awareness about how light-based technologies promote sustainable development and provide solutions to global challenges in energy, education, agriculture and health.

Lasers have indeed transformed medicine and dentistry in particular. It may sound as a bold statement, yet the future of dental lasers has truly arrived — today. The latest generation of dental lasers has revolutionized dentistry with treatments that are faster, more effective and more satisfying to patients and practitioners than ever before.

LA&HA, the Laser and Health Academy, has for many years served as a platform for exchanging ideas, leading to the development of new applications and value in using laser technology. It is our pleasure and privilege to introduce you to the latest state–of–the–art dental lasers that are making the modern treatment process unrecognizable in comparison to the way classical treatments have long been conducted.

In this LA&HA magazine we present how lasers have moved the boundaries in the dental treatment practice, through in–depth reports from LA&HA members around the globe, interviews with some of the top experts in the field, and through a selection of clinical treatment guides. We also give you an inside peek into one of Fotona’s dental laser prodigies, LightWalker®, winner of the ‘red dot’ design award, together with a special interview with Fotona management.

Welcome to the new era!

Dr. Branka Korosec
General Secretary of the Slovenian technology platform Fotnika21
EXHIBITING IN ROME
Fotona’s Laser Technology Making Inroads in Implantology

Fotona and its local partner Emmeci 4 s.r.l. exhibited at the 23rd annual EAO (Europe-an Association for Osseointegration) Congress in Rome, an event which attracted more than 3,000 delegates from around the world.

During the congress, an exceptionally high level of interest was observed among implantologists from numerous countries, all of whom were eager to harness the power of Fotona’s laser technology for a range of applications, from preparing implant beds to sinus lifting. Interest was particularly high in the company’s X-Runner® digitally controlled handpiece, the world’s first “automatic” dental handpiece that provides high precision and control over ablation in both hard and soft tissues.

AT WFLD CONGRESS
WFLD Paris Hotspot: Laser Dentistry

Fotona took part in WFLD congress in Paris, an occasion which saw exceptionally high international participation and record interest in the company’s dental laser systems.

There were numerous reports about successful uses of Fotona’s dental lasers due to its high precision, VSP technology, special fiber tip shapes, and new treatment methods such as NightLase®. Lectures at WFLD covered all fields of dentistry, although a major focus was on implantology.

According to the lecture of Peter Fahlstedt, a dental practitioner from Sweden, peri–implantitis presents an increasing threat to oral health: 12 million implants are placed every year (1/3 by general dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists) and after 5–8 years, 30–40% of patients may develop peri–implantitis (at least 3.6 million dentists).

In the dental program, participants were highly impressed with the hard– and soft–tissue treatment capabilities provided by digitally controlled laser handpieces, as well as with the latest update on revolutionary PIPS method and treatments with QSP mode.

In the evening, all LA&HA guests were invited to attend a special gala dinner hosted by Fotona as part of its 50th anniversary celebration.

LA&HA SYMPOSIUM
Record Attendance at 4th International LA&HA Symposium

More than 350 attendees were present at the fourth annual Laser and Health Academy (LA&HA) Symposium, which took place on Friday, May 23rd at the Austria Trend Hotel in Ljubljana, Slovenia.

During the symposium a total of 43 clinical lectures from around the world presented the latest innovations and applications in the field of medical laser technology. The lecture topics were grouped into parallel sessions according to three main subject categories, Lasers in Dentistry was one of them.

In the dental program, participants were highly impressed with the hard– and soft–tissue treatment capabilities provided by digitally controlled laser handpieces, as well as with the latest update on revolutionary PIPS method and treatments with QSP mode.

In the evening, all LA&HA guests were invited to attend a special gala dinner hosted by Fotona as part of its 50th anniversary celebration.

The Laser and Health Academy (LA&HA) is a non-profit organization dedicated to the promotion of research, education and publishing in the field of laser medicine. LA&HA actively collaborates with industry, medical professionals and universities on projects aimed at the development and improvement of laser applications. Additionally, LA&HA serves as a platform for continuous education in the medical laser community with numerous professional workshops offered worldwide on a variety of medical laser topics.

Dr. Fahlstedt also added that his treatments with Fotona’s Er:YAG dental lasers promote fast healing and regeneration due to a number of reasons, including:

- selectivity in the removal of granulation tissue from alveolar bone and connective tissue
- bactericidal effects at the surgical site, including lipopolysaccharides (endotoxin) without chemicals
- better cleaning of implant surfaces (elimination of biofilm).

LIGHTWALKER AT S
LightWalker AT S — better visibility in oral surgery

Fotona’s LightWalker AT S laser systems are now being offered with a green laser pointer for enhanced visibility, along with a larger touch screen for easier operation.

Dental and maxillofacial surgeons have expressed keen interest in a green pointer option, which makes their use of tipless handpieces more comfortable during soft-tissue surgical procedures. Using a green pointer beam with a dental laser shows the exact cutting line that the Er:YAG laser beam will perform. Even in the exceptionally high brightness of the treatment area, a green pilot beam clearly indicates the path of the surgical cut.

QSP™

LightWalker’s QSP™ Mode Superiority Confirmed

Four years after the first introduction of LightWalker’s unique QSP™ (Quantum Square Pulse) mode, many reports have surfaced about its superior effectiveness in cutting even the hardest dental tissues and its unmatched precision in soft-tissue surgery. With QSP, procedures are faster and also more comfortable, especially at higher pulse energies.

A detailed study at the University of Ljubljana in Slovenia compared the ablation efficiency of different erbium laser pulse duration modes. The highest ablation efficiency was measured with QSP mode, due to its significant reduction of undesirable effects associated with laser beam scattering and absorption in the debris cloud.

Research studies at Bezmialem Vakif University in Istanbul, Turkey, concerning microleakage and secondary bacterial contamination through filling borders, have provided further support for the effectiveness of LightWalker’s QSP mode and the exceptional quality of filling margins prepared with QSP.

At the Department of Oral surgery at the University of Zagreb, the QSP mode for cutting and ablation of soft tissue was observed to be effective, pleasant, and highly successful treatment modality for oral surgery. Excellent coagulation and precision of surgeries was reported, and no recurrence of lesions nor other potential complications were observed.

X-RUNNER
X-Runner + HDS = the perfect combination for high precision!

Dental treatments that require the removal of a large amount of hard dental tissue, such as a deep or broad surface area, become more precise, easy and elegant with the help of Fotona’s X-Runner®, a unique laser handpiece that offers automatic guidance as well as adjustable spot size and shape. With the new ultra-high precision HDS (High Density Scanning) mode, X-Runner® now assures even smoother edges and deeper ablation depths at the same parameters.

X-Runner® allows practitioners to perform treatments involving otherwise unattainable patterns. Automatic guidance of the laser beam allows higher repetitions to be used, and consequently procedures are significantly faster. Surface treatments like preparations for veneer bonding and orthodontic brackets in hard tissue, as well as lesion removal and desepithelialization in soft tissue, can be performed with a significantly higher degree of precision. X-Runner®, which works in conjunction with the LightWalker AT S system, Fotona’s latest generation of dental lasers, is an ideal tool whenever deep or extended cuts need to be made in hard or soft dental tissue. Since it’s a laser-based handpiece, all of the other well-known laser benefits still apply, such as non-contact, vibration-free, low-pain, minimally invasive treatments.
8 “Modern dentistry without a laser is simply not modern dentistry.” Interview with Fotona management.

Lasers are playing an increasingly important role in modern dentistry and have achieved their original goal of replacing and supplementing mechanical tools with more precise and less-invasive optical technology.

20 EXPERTS
The ‘Magic Beam’ Changed my Career as an Orthodontist!
With the prestigious red dot award for LightWalker®, With the prestigious red dot award for LightWalker®, Prof. Dr. Carlo Fornaini, MD, DDS, University of Parma

»Digitally controlled handpieces will be a great opportunity for dentists. It allows for reduced operating times, greater control of the depth of ablation, and a pre-defined treatment area.«

Interview with Prof. Dr. Aslihan Usumez DDS, PhD, Bezmiälem Vakıf University, Department of Prosthodontics, Istanbul

»The quality of treatments in a dental clinic using a laser will forever surpass the quality in the same clinic before using the laser.«

26 Magic in Everyday Dental Practice.
Interview with Hong Kong dentist Dr. Seto Siu Keung, BDS

»Once a dentist starts treating patients with a laser, he will most likely enjoy his everyday practice more than ever before.«

28 The Best Treatment Platform Possible.
Interview with Maryland dentist Steven Pohlhaus, DDS, FAGD

»Actually, the future is now. The new LightWalker handpiece brings a new dimension into the laser-assisted therapeutic tissue approach.«

30 A Smarter Way of Treating Patients and Building Your Practice.
Interview with Dr. Kresimir Simunovic, DMD, MSc

»More than ever before, the future is now.«

34 Laser: Efficiency and ‘Fun Factor’ Increased.
Interview with German Dentists Frank Herlach, DDS, Alexandra Deutsch, DDS, and Alexander Kelsch, DDS

»More and more patients who are afraid of dental treatments come to us especially on account of laser treatments.«

40 IN-DEPTH
X-Runner®: Hold the Future of Laser Dentistry in Your Hands
The newest and most innovative handpiece for oral hard- and soft-tissue removal from Fotona is the X-Runner®, an ideal accessory for the company’s LightWalker AT S laser.

42 High Finesse? Low Problem!
Fast, minimally invasive treatments requiring high finesse are finally possible thanks to Quantum. Square Pulse™ (QSP™) mode Erbium dental laser technology.

44 Laser induced photoacoustic: a root cause revolution
The photon-induced photoacoustic method represents a revolutionary solution for cleaning and disinfecting the root canal system, reaching almost 100% bacterial reduction.

46 Lower heat, more precise cutting and faster healing
A recent study of the performance of an Er:YAG laser compared to a surgical drill for osteotomy treatment in oral surgery proved beyond doubt that Er:YAG treatment in bone surgery at specific parameters (MAX mode, Fotona) assures lower heat generation, precise cutting, rapid osseous healing and osteoinduction.

50 TREATMENT GUIDES
Er:YAG — Your First Choice in Cavity Preparation
Orthodontic Treatment: Stress Gone With the Light
Taking endo-perio treatments to a whole new level
QSP Mode for Fascinating Results in Soft-Tissue Surgery

56 Laser induced photoacoustic: a root cause revolution
The photon-induced photoacoustic method represents a revolutionary solution for cleaning and disinfecting the root canal system, reaching almost 100% bacterial reduction.

60 The Best Treatment Platform Possible.
Interview with Maryland dentist Steven Pohlhaus, DDS, FAGD

»Actually, the future is now. The new LightWalker handpiece brings a new dimension into the laser-assisted therapeutic tissue approach.«

Interview with Prof. Dr. Aslihan Usumez DDS, PhD, Bezmiälem Vakıf University, Department of Prosthodontics, Istanbul

»The quality of treatments in a dental clinic using a laser will forever surpass the quality in the same clinic before using the laser.«

64 High Finesse? Low Problem!
Fast, minimally invasive treatments requiring high finesse are finally possible thanks to Quantum. Square Pulse™ (QSP™) mode Erbium dental laser technology.

66 Laser induced photoacoustic: a root cause revolution
The photon-induced photoacoustic method represents a revolutionary solution for cleaning and disinfecting the root canal system, reaching almost 100% bacterial reduction.

70 Lower heat, more precise cutting and faster healing
A recent study of the performance of an Er:YAG laser compared to a surgical drill for osteotomy treatment in oral surgery proved beyond doubt that Er:YAG treatment in bone surgery at specific parameters (MAX mode, Fotona) assures lower heat generation, precise cutting, rapid osseous healing and osteoinduction.

74 The Best Treatment Platform Possible.
Interview with Maryland dentist Steven Pohlhaus, DDS, FAGD

»Actually, the future is now. The new LightWalker handpiece brings a new dimension into the laser-assisted therapeutic tissue approach.«

76 Better, Stronger and Longer-Lasting Restorations.
Interview with Prof. Dr. Aslihan Usumez DDS, PhD, Bezmiälem Vakıf University, Department of Prosthodontics, Istanbul

»The quality of treatments in a dental clinic using a laser will forever surpass the quality in the same clinic before using the laser.«

80 High Finesse? Low Problem!
Fast, minimally invasive treatments requiring high finesse are finally possible thanks to Quantum. Square Pulse™ (QSP™) mode Erbium dental laser technology.

82 Laser induced photoacoustic: a root cause revolution
The photon-induced photoacoustic method represents a revolutionary solution for cleaning and disinfecting the root canal system, reaching almost 100% bacterial reduction.

84 Lower heat, more precise cutting and faster healing
A recent study of the performance of an Er:YAG laser compared to a surgical drill for osteotomy treatment in oral surgery proved beyond doubt that Er:YAG treatment in bone surgery at specific parameters (MAX mode, Fotona) assures lower heat generation, precise cutting, rapid osseous healing and osteoinduction.

88 The Best Treatment Platform Possible.
Interview with Maryland dentist Steven Pohlhaus, DDS, FAGD

»Actually, the future is now. The new LightWalker handpiece brings a new dimension into the laser-assisted therapeutic tissue approach.«

92 Better, Stronger and Longer-Lasting Restorations.
Interview with Prof. Dr. Aslihan Usumez DDS, PhD, Bezmiälem Vakıf University, Department of Prosthodontics, Istanbul

»The quality of treatments in a dental clinic using a laser will forever surpass the quality in the same clinic before using the laser.«

96 High Finesse? Low Problem!
Fast, minimally invasive treatments requiring high finesse are finally possible thanks to Quantum. Square Pulse™ (QSP™) mode Erbium dental laser technology.

98 Laser induced photoacoustic: a root cause revolution
The photon-induced photoacoustic method represents a revolutionary solution for cleaning and disinfecting the root canal system, reaching almost 100% bacterial reduction.

100 Lower heat, more precise cutting and faster healing
A recent study of the performance of an Er:YAG laser compared to a surgical drill for osteotomy treatment in oral surgery proved beyond doubt that Er:YAG treatment in bone surgery at specific parameters (MAX mode, Fotona) assures lower heat generation, precise cutting, rapid osseous healing and osteoinduction.
Interview with Jeffrey W. Jones, CEO of Fotona Holdings, LLC, and dr. Matjaz Lukac, CEO of Fotona d.d.

Fotona is a leading global dental and medical laser company, with facilities located in the USA (Fotona, LLC) and in Europe (Fotona, d.d.). We sat down with Fotona management to discuss the company’s vision for the future of the dental lasers market.

What you believe are Fotona’s key competitive strengths in the laser industry?

J. Jones: Fotona is built upon a solid foundation of customers, partners, employees, quality products and global leadership. Based in the US and the EU, with corporate headquarters in San Clemente, California and Ljubljana, Slovenia, Fotona’s business philosophy is to continuously choose perfection to meet the needs of a highly demanding marketplace. The company has been in the business of making lasers since 1964, just four years after the invention of the first laser. This makes it one of the most experienced, if not the most experienced laser company in the world. These strong roots, accompanied with Fotona’s long-term focus on research and development, represent the company’s major strengths and provide a solid foundation for sustainable growth in the medical laser technology industry. These same core strengths also give us the know-how and confidence to strategically commit ourselves to offer medical practitioners no less than the most experienced, if not the most experienced laser company in the world.

How has laser technology evolved during the years you’ve been working in the industry?

Dr. Lukac: The huge potential of lasers in dentistry was recognized almost immediately after the invention of the first laser. However, the technological challenges were such that it has taken several decades before dental lasers have fulfilled, and recently even surpassed, the early expectations of the dental and medical community. Fotona has been one of the pioneers in this development. For example, we led the way by introducing Variable Square Pulse Technology, which has given practitioners greater control over the intensity and extent of any laser treatment to a degree that far exceeds what is possible using standard scalpels or drills.

Even though lasers were invented several decades ago, it is still considered to be an exciting and new technology, and I attribute this widely held perception to the fact that the laser is so different and unique compared to other technologies that it has inspired a continuous flow of innovation and technological developments till this day, and will undoubtedly continue to do so for quite some time to come.

From a practitioner’s perspective, what are some of the unique advantages that lasers can now offer the dental profession?

Dr. Lukac: As a result of the dramatic technological advances in recent years, lasers are playing an increasingly important role in modern dentistry and have achieved their original goal of replacing and supplementing mechanical tools with more precise and less-invasive optical technology. Dental lasers enhance and improve upon classical procedures and, as opposed to classical tools such as burrs or scalpels, offer a much wider range of treatment protocols and greater precision of control. With classical tools, the effect on the patient’s tissue is controlled mainly through tactile pressure on the dentist’s hand. With a laser, however, the dentist can precisely adapt and optimize the speed, finesse and thermal depth of any treatment at the touch of a button.

Even more importantly, lasers enable new procedures that are simply not possible or even imaginable using classical dental tools. And laser treatments are also friendlier to patients and dentists. So the unique advantages of laser technology really speak for themselves, and the laser is the way to go, not just in dentistry, but in medicine in general. Laser light allows a practitioner to work selectively on different tissues, and in a minimally invasive, contact-free manner. Laser light is also “weightless”, and can thus be moved and positioned effortlessly in 3D space, making it an ideal match with the latest revolutionary technologies in medicine such as intelligent robotics.

What new developments or technological breakthroughs in laser dentistry can we expect to see from Fotona this year?

J. Jones: This year Fotona will be introducing some of the company’s most advanced technological achievements.

Our latest generation dental laser, the LightWalker® AT S with a green pilot beam, which improves the dentist’s ability to see the laser spot clearly during surgical procedures, will be shown to the public and professionals with some exciting new features, such as novel procedures for difficult-to-treat conditions like peri-implantitis, a QSP-optimized procedure for oral surgery, a new straight-tip handpiece for Er:YAG, and exciting new uses for our improved digitally controlled X-Runner handpiece.

We will also announce a new biomodulation Nd:YAG handpiece with a versatile collimated flat–top beam profile, which allows faster and homogenous irradiation without the risk of undesired thermal effects. As a recent study concluded, Nd:YAG laser appears to be an ideal wavelength for biomodulation because its photons can penetrate deeper tissue structures. The new straight-tip handpiece will enable the dentist to use natural movements of the hand, just like a pencil, resulting in improved clinical results and greater satisfaction of both the practitioner and the patient. We also greatly improved the X-Runner’s pattern algorithms to create truly precise cutting shapes and lines.
In terms of global competition, where do you see the future of the dental laser industry heading and how well is Fotona positioned for the future?

Dr. Lukac: We are aware that Fotona is not the only company that has recognized the great potential of laser technology in medicine and dentistry. There are several approaches to the ever-increasing global competition in the laser industry, one of which is consolidation. Fotona has been following a different approach, which is based on a disciplined focus on the highest performing laser technologies, and an almost fanatical commitment to the quality and reliability of our products.

J. Jones: Our belief is that dental practitioners around the world will be as excited as we are with the recent technological breakthroughs in laser dentistry. Modern dentistry without a laser is simply not modern dentistry. With Fotona’s LightWalker system, every dentist can finally “walk the light”.

X-Runner®: Advanced Handpiece Technology

In 2013, Fotona introduced a major breakthrough in laser dentistry, a digitally controlled handpiece for dental lasers with instantly adjustable spot size and shape. The new X-Runner® handpiece adds to the precision of laser treatments by helping the practitioner guide the laser beam swiftly and accurately across the surface of treated tissues. What makes it very unique and practical is that by pressing a button on the screen, the size and shape of the treatment zone can be changed, unlike classical treatments where the dentist needs to switch between drills and saws of different sizes. It is essentially robotics on a miniature scale.
The LightWalker® dental laser, developed by the Slovenian company Fotona, one of the leading global manufacturers of medical lasers, was awarded one of the world’s largest and most distinguished design awards, the “red dot award: product design” for combining innovation, technological perfection and excellent design. The red dot award is considered one of the most distinguished international quality seals for exceptional design.

“The aesthetics of dental accessories play an important role. Because dental rooms are small and each piece is very noticeable, we decided to focus our efforts on developing not only the best-made laser, but also the most beautiful one,” explains dr. Marko Marincek, director of development at Fotona.

With the introduction of the LightWalker on the market, Fotona’s R&D department, led by dr. Marincek, caused a revolution in dentistry. The system offers little-or-no-pain treatment of soft and hard tissues, with faster healing, bloodless and sutureless soft-tissue surgery, effective periodontal treatments, safe and efficient endodontic treatments and numerous cosmetic procedures.

It is notable that Fotona designed the LightWalker in collaboration with two different designers — the Slovenian industrial designer Bojan Klancar and the internationally recognized Italian design agency Creanova. “Collaboration with two different designers was not an easy job at all. Both of them had excellent ideas and I served as a moderator between. We sat down together for hours and hours developing the design that we ultimately decided for, and as you can see, the results turned out excellent and users are all highly satisfied,” explains dr. Marincek.

Applications for LightWalker

LightWalker can be used for everything from oral surgery to cosmetic TouchWhite™ tooth whitening, offering the highest standard of dental treatment and simplicity of use. It allows for an extensive range of applications from oral surgery to cosmetic TouchWhite™ tooth whitening, offering the highest standard of dental treatment and simplicity of use.

THE RESULTS SPEAK FOR THEMSELVES: THE LIGHTWALKER HAS REALLY EXCEEDED OUR EXPECTATIONS

Dr. Marianne Degerstrom, Tannklinikken in Narvik, Norway

“Surgery with the LightWalker is fantastic and post-op there is no pain or swelling. We also use the Nd:YAG for endo and we are excited to soon start with PIPS®. It is almost like we do not believe the results we are seeing and the LightWalker has really exceeded our expectations! The patients are very positive towards this treatment as well and they accept laser treatment in a much higher degree compared to conventional therapy. I believe it has got to do with the different sound and non contact approach. The local newspaper found out about our LightWalker very quickly which resulted in a very positive article and new patients!

At first it felt a little bit confusing with completely new terminology, but after our 3-day course at ILSD in Stockholm, we felt very comfortable in offering this treatment to our patients. The three day course consisted of both theoretical and practical parts and it really gave us a great start. I already see so many clinical benefits. We have used the laser on different perio cases with excellent results. We are also very pleased with results in various carious treatments and abrasion defects where we have not needed to use anaesthetics so far.”
presets for 40 different applications, such as intra-oral soft-tissue surgery, removal of fibroma, leukoplakia, and also selected dermatology and plastic surgery indications (skin resurfacing, skin tags). “More and more dentists around the world are nowadays deciding to offer simple dermatological services, and LightWalker provides this capability,” Dr. Marincek said.

It is obvious that laser dentistry is gentler, so procedures are quicker and simpler, and there is often no need for anesthetic. LightWalker has one of the most comprehensive lists of clinical applications of any dental laser in the world. With the availability of both tipped and tipless handpieces, easy-to-follow treatment protocols, and touch-of-a-button treatment settings, practitioners are able to perform every dental treatment with greater confidence and success, bringing in extra practice income along the way. The specially designed handpieces allow for easy access to hard-to-reach places and prevent cross contamination.

Because of LightWalker’s widest range of pulse durations, the spectrum of possible applications is virtually unlimited. In particular, Fotona’s unmatched pulselength technology provides a virtually limitless parameter range for hard-tissue ablation options.

“The red dot award was LightWalker’s third prestigious international quality recognition. In 2011 the Pride Institute awarded the laser system the “Best of Class Technology Award” and Dentistry Today, America’s leading clinical news magazine for dentists, recognized LightWalker as one of the “TOP 100 dental products of the year.”

Fotona was founded in 1964, only four years after the invention of the very first laser. Today Fotona is one of the most experienced developers of high-technology laser systems, recognized as a world leader in the design, manufacture, and support of advanced laser systems for dentistry, dermatology, surgery, gynecology and other areas of medicine. Fotona is a company committed to designing, manufacturing and delivering the highest performance, best made laser systems in the world. Stringent testing of all components and in-house production of its medical and dental laser systems ensures that the company’s products are of the highest quality, reliability and durability.
Experts
Experts

The ‘magic beam’ changed my career as an orthodontist

Interview with Prof. Dr. Carlo Fornaini, MD, DDS, University of Parma

By Zala Kerle

How did you decide to become a dentist, and what influenced you to start using a laser?

Prof. Fornaini: Back when I was a university student (probably in the Middle Ages!) there still did not exist a dental school in my region, so I had to take a degree in Medicine and Surgery and then to specialize in Dentistry. This path has had a great influence in my daily practice, as I also frequently use my laser to treat vascular and dermatological diseases. I’ve always been technology-oriented, also in my private life, so when I heard about this new “magic beam” more than twelve years ago, I decided to look into it. And this rendezvous totally changed my working life, stimulating new areas of research, both fundamental and clinical, and generating new enthusiasm toward my job.

I think that laser utilization should be considered a new specialization of medicine, since it is one of the few fields where it is still possible to make major advancements in research — for most other fields it seems as if everything important has already been discovered. Unfortunately, the other side of the coin is that now, despite my age, I work a lot more than before, but also with greater enthusiasm, so it is not a burden!

What kind of treatments do you routinely perform with your Fotona laser, and what do you see are the main benefits with using a laser?

Prof. Fornaini: I think that today it is possible to use a laser in nearly all dental treatments. About the only procedure that I do not do with a laser is crown preparation. But I use my Fotona laser in about 75% of my daily practice and find it invaluable, especially due to the fact that the device offers a combination of two complementary wavelengths (1064 nm + 2940 nm) which provide the possibility of “360° utilization”. I have described this concept in several papers, as sometimes I find it very interesting and useful to employ both wavelengths in the different steps of the same treatment, i.e. in the exposure of a retained tooth or to re-contour the gingiva during a composite restoration.

But, to strictly answer to the question, I use my LightWalker in conservative treatments, for surgery of soft and hard tissues, perio, endo, ortho, prosthetics, bleaching and even for intra-oral metal welding. And last but not least, I like to use the laser for the treatment of perioral tissues: it is always wonderful, after a complex oral rehabilitation, to improve the aesthetics of a patient’s lips or to eliminate wrinkles — it is the “icing on the cake”.

About Dr. Carlo Fornaini

Prof. Fornaini is an eminent researcher and lecturer in the field of lasers in oral applications and dentistry. He currently holds a research position at the University of Nice Sophie Antipolis, where he also coordinates the EMDOLA, European Master degree in Oral Laser Applications program. He is a faculty member at the Dental School of the Faculty of Medicine and Surgery of the University of Parma, which runs the EMDOLA program, a scientific committee member of several international and national laser dentistry organizations and has lectured and published numerous times on various topics within laser dentistry. He currently practices laser dentistry in his own private practice in Fiorenzuola d’Arda (Italy) with a particular focus on pediatric dentistry. Prof. Fornaini is a LA&HA Expert Clinical Lecturer.
I use my LightWalker in conservative treatments, for surgery of soft and hard tissues, perio, endo, ortho, prosthetics, bleaching and even for intra–oral metal welding.

You have published numerous academic articles on dentistry. What are some of the topics that you have recently been working on?

Prof. Fornaini: In the past several years I’ve been very busy on the topic of intra–oral laser welding with Fotona lasers, with several “in vitro”, “ex vivo” and “in vivo” tests. I published ten papers on this matter. But my recent publications also regard Er:YAG surgery in soft tissues (i.e. oral lichen planus) and hard tissues (tori mandibularis and maxil–laris) and also in conservative dentistry (i.e. restorations of traumatically fractured permanent incisors). Also very interesting, for its originality, was a study on customer satisfaction with Er:YAG conservative treatments, in which an 11–item questionnaire was given to 100 patients, with the results indicating a very high level of satisfaction (90 – 100%).

What is your impression of Fotona’s new X–Runner® dental handpiece, and where do you find it to be the most helpful at your practice?

Prof. Fornaini: Several years ago I began conducting tests with a modified Fotona dermatological scanner on human extracted teeth. The reason for doing this was that I thought, and still believe, that digitally controlled handpieces will be a great opportunity for dentists. It allows for reduced operating times, greater control of the depth of ablation, and a pre–defined treatment area.

I believe that there are many clinical situations where instantly adjustable treatment shape and size may be of great benefit, and it should be considered as a significant upgrade to the classic handpiece during every moment of daily practice. In fact, even though it is possible to change from the X–Runner’s digitally controlled automated modality to the classical handpiece modality with only a touch of the screen, I prefer to utilize the automated modality in nearly every clinical situation: from orthodontics to surgery and from conservative to pediatric dentistry. I’m sure that this manner of working with Er:YAG will eventually replace the current practice of working strictly with the classic handpiece.

Also very interesting, for its originality, was a study on customer satisfaction with Er:YAG conservative treatments, in which an 11–item questionnaire was given to 100 patients, with the results indicating a very high level of satisfaction (90–100%).
When did you first become interested in laser dentistry and what inspired you to make it the focus of your academic research?

Prof. Dr. Usumez: It began back in 1999 when I was working at the Oklahoma University Health Sciences Center. One day I attended a lecture by Charles Arcoria, who was in Oklahoma City speaking about dental lasers, and this topic immediately caught my interest. During my PhD, I planned to perform a study on dental lasers, and then decided to base my PhD thesis on a specific laser topic — about the etching of enamel surfaces and the bonding of Porcelain Laminate Veneers, which was later published in the Journal of Prosthetic Dentistry.

You’ve conducted some studies on the bond strength and microleakage of dental composites. Can you tell us something about how lasers may influence these factors with typical cavity preps?

Prof. Dr. Usumez: Firstly, when working with lasers on dental hard tissues, it is essential to choose the right parameter settings. This is the most important factor that will influence the final results, although other factors such as water spray will influence the results as well. We can also say that when performed in the right way, you will certainly achieve exceptionally good results in terms of bond strength and low microleakage between composite and hard dental tissues, and this will increase your level of proficiency with the Er:YAG laser for cavity preparation.

From your research, how do hard–tissue treatments with LightWalker’s QSP Er:YAG mode compare to laser treatments using standard Er:YAG?

Prof. Dr. Usumez: We did several research projects with the QSP mode of LightWalker. I can say that we achieved outstanding results for the etching of enamel and the bond strength of orthodontic brackets to enamel. In another study, we also achieved especially good results for the etching of dentin. From studying atomic force microscopic pictures, we realized that the surface was perfect for bonding. Readers can find more details of this study in the one of the upcoming issues of the Journal of Orthodontics.

In your opinion, how would you summarize the main benefits of choosing a laser system that also includes a second complementary wavelength, such as Nd:YAG?

Prof. Dr. Usumez: Being a prosthodontist as well as a laser dentist, I can list several advantages of a second complementary wavelength such as Nd:YAG. With the Nd:YAG laser I can perform: hypersensitivity treatment of dentin before or after crown cementation, gingival troughing before taking an impression, bleaching of enamel, soft–tissue surgeries with fast healing and without bleeding, treatment of hyperpigmented gingiva, fast wound healing in mucosa and also aphthous lesions.

I would further add some specific applications for the prosthodontic area like intraoral welding of alloys as well as applications in the treatment of temporomandibular joint disorders. I can shortly summarize that the quality of treatments in a dental clinic using a laser will forever surpass the quality in the same clinic before using the laser.

The quality of treatments in a dental clinic using a laser will forever surpass the quality in the same clinic before using the laser.

When performed in the right way, you will certainly achieve exceptionally good results in terms of bond strength and low microleakage between composite and hard dental tissues.

Experts

Better, stronger and longer–lasting restorations

Interview with Prof. Dr. Aslihan Usumez DDS, PhD, Bezmialem Vakif University, Department of Prosthodontics, Istanbul, Turkey, on New Research on Bond Strength and Microleakage

ABOUT PROF. DR. ASLIHAN USUMEZ

Dr. Usumez is a 1996 graduate of Hacettepe University Faculty of Dentistry. In 1997 she started her PhD education in Prosthodontics and completed her PhD thesis “Evaluation of bonding Porcelain Laminate Veneers to acid etched or Er,Cr:YSGG laser etched teeth surfaces” in 2001. She was appointed as “Assistant Professor” in 2003, as “Associate Professor” in 2005 and as “Professor” in 2010. She completed her MSc in “Lasers in Dentistry” in RWTH Aachen University in 2012. She was awarded as the “Young Scientist of 2008” by The Turkish Dental Association. She has published over 60 scientific articles in journals, received oral and poster presentations awards and travel stipends from international congresses. She is currently the head of the Department of Prosthodontics in Bezmialem Vakif University, Faculty of Dentistry, Istanbul. She is married and has 2 children.
Magic in everyday dental practice

Interview with Hong Kong dentist Dr. Seto Siu Keung, BDS, on fast and effective procedures in dental surgery

What was your first contact with a dental laser?

Dr. Seto: My first contact was thanks to my friend, Dr. Johnny Wong, who had been using Nd:YAG lasers since early 90’s. On one occasion he had asked for my help to videotape a cavity preparation with an new Er:YAG laser, which was a demonstration unit. Later, when I studied acupuncture, an instructor had explained the therapeutic uses of a laser to me in Chinese. After I finished that course, I volunteered to treat some elderly people in a social welfare center, where I witnessed firsthand the power of lasers in clinical treatment. Now I understand that this was purely the effect of LLLT (Low Level Laser Therapy), but at the time laser treatments appeared to me as something magical.

When I first learned that there was master course offered at the Aachen Dental Laser Center, I immediately applied, and since then I’ve learned many more fascinating details and have truly become ‘addicted’.

What do you appreciate the most about working with a laser?

Dr. Seto: I appreciate that it is based on simple physics, and that there are always new applications with lasers. It seems there is unlimited potential, and it always enhances the clinical results over conventional dentistry.

In cavity preparations, the need for local anesthesia is very much reduced and the laser avoids unnecessary pulp exposure due to its selectivity characteristics in caries removal. However, the operator should be very familiar with the different parameters and laser settings to cope with each situation.

With periodontal treatments, patients are highly pleased with the minimal post-operative discomfort following laser treatments. With lasers, we can broaden the scope of many services provided, and some procedures such as gingival depigmentation, lip depigmentation, frenectomy or crown lengthening, are not only possible but are indeed quite simple.

What is your major indication?

Dr. Seto: Basically every discipline in general dentistry, i.e. cavity prep, periodontal treatment, oral surgery, and conservative dentistry, but my favorite is endodontic treatments. I will no longer do a root canal treatment without the assistance of a laser. When you fully understand the power of lasers in canal disinfection, you will be much more confident in performing endodontic treatments. I was very impressed by a case in which I had performed a root canal treatment in a lower premolar with the use of Er:YAG to assist irrigation. I could see that there were a total of five portal openings after obturations, however, they were not visible in my pre-op X-rays. To be frank, discovering apical delta or accessory canals was not very common before I began using lasers in my endodontic procedures.

Do you still think of the laser as a magical tool?

Dr. Seto: The laser is truly a magical tool, but it does take time and commitment to learn the necessary knowledge and practice to developed the same speed, or even faster, compared to conventional mechanical methods. From a patient’s perspective, comfort and clinical outcome are what matter the most. But the practitioner’s perspective is also important. In my opinion, once a dentist starts treating patients with a laser, he will most likely enjoy his everyday practice more than ever before.

ABOUT DR. SETO SIU KEUNG

Dr. Seto obtained his Bachelor of Dental Surgery degree (HK) in 1992 from the University of Hong Kong. After several years in general dental practice he obtained his Diploma of General Dental Practice (UK) from the Royal College of Surgeons of England in 1996. He has also enriched himself in Dental Radiology and gained a Post-Graduate Diploma in Dental Surgery (HK) in 1999 and an MSc (London) in 2001. Dr. Seto then switched to the cutting edge of technology, where he obtained his MSc (Lasers in Dentistry) with distinction from the RWTH Aachen University, Germany, in 2007. He is currently a part-time Clinical Lecturer at the University of Hong Kong’s Faculty of Dentistry. Dr. Seto is a member of the World Federation of Laser Dentistry, Vice President of the LOC for the WFLD Congress 2008 Hong Kong and academic co-worker of AALZ – Aachen Dental Laser Center of RWTH Aachen University, Germany. Dr. Seto is a LA&HA Expert Clinical Lecturer.

Experts

By Zala Kerle
Experts

The best treatment platform possible

Interview with Maryland dentist Steven Pohlhaus, DDS, FAGD on the advanced capabilities of LightWalker lasers in the field of dentistry

Dr. Steven Pohlhaus, DDS, FAGD from Linthicum, Maryland, has been practicing dentistry for over twenty years and laser dentistry since 2004. He has devoted his career to introducing his patients and colleagues to the benefits of lasers. Dr. Pohlhaus has been lecturing on the topic of dental lasers since 2005 and is a trainer for Technology4Medicine’s “Laser Essentials” course for new owners of the LightWalker Laser. He is a member of the faculty at the University of Maryland Dental School in the Department of Oncology and Diagnostic Sciences.

ABOUT DR. STEVEN POHLHAUS

Dr. Steven Pohlhaus, DDS, FAGD from Linthicum, Maryland, has been practicing dentistry for over twenty years and laser dentistry since 2004. He has devoted his career to introducing his patients and colleagues to the benefits of lasers. Dr. Pohlhaus has been lecturing on the topic of dental lasers since 2005 and is a trainer for Technology4Medicine’s “Laser Essentials” course for new owners of the LightWalker Laser. He is a member of the faculty at the University of Maryland Dental School in the Department of Oncology and Diagnostic Sciences.

LightWalker’s PHAST™ technology allows me to perform less invasive endo efficiently and more effectively than traditional methods. This advanced system has also allowed me to perform many more root canals in my practice rather than referring these cases to specialists.

Dr. Chad Edwards instructing on LightWalker functions

Dr. Pohlhaus: The LightWalker allows me to rapidly and efficiently cut tooth structure, performing the large majority of my operative dentistry and cavity preparations without using a high speed drill and without having to give shots. Patients appreciate the lack of a drill and the reduced need for local anesthetics, and I and my staff appreciate the ability to perform minimally invasive dentistry on a daily basis. One of the unexpected benefits of the LightWalker is being able to quickly remove veneers. From a personal perspective, I would emphasize that after working with the LightWalker, I cannot imagine working again without a dental laser.

In what ways has working with the LightWalker laser system transformed your daily experience as a dentist?

Dr. Pohlhaus: The LightWalker allows me to rapidly and efficiently cut tooth structure, performing the large majority of my operative dentistry and cavity preparations without using a high speed drill and without having to give shots. Patients appreciate the lack of a drill and the reduced need for local anesthetics, and I and my staff appreciate the ability to perform minimally invasive dentistry on a daily basis. One of the unexpected benefits of the LightWalker is being able to quickly remove veneers. From a personal perspective, I would emphasize that after working with the LightWalker, I cannot imagine working again without a dental laser.

How would you describe your experience in using LightWalker for performing endodontic treatments?

Dr. Pohlhaus: LightWalker’s PHAST™ technology allows me to perform less invasive endo efficiently and more effectively than traditional methods. This advanced system has also allowed me to perform many more root canals in my practice rather than referring these cases to specialists. The many technical and clinical advantages of LightWalker have given me the confidence that I am doing the best endo treatment possible.

Dr. Pohlhaus: LightWalker’s PHAST™ technology allows me to perform less invasive endo efficiently and more effectively than traditional methods. This advanced system has also allowed me to perform many more root canals in my practice rather than referring these cases to specialists. The many technical and clinical advantages of LightWalker have given me the confidence that I am doing the best endo treatment possible.

Are you also performing periodontal treatments as well?

Dr. Pohlhaus: Since implementing the LightWalker into my practice we have significantly increased the treatment of periodontal disease. The unique capabilities of the LightWalker’s dual Nd:YAG and Er:YAG wavelengths provide the ability to comprehensively attack pathogens, and the photobiomodulation or LLLT effects of these two wavelengths work together to effectively treat this widespread disease.

How would you summarize the advantages of LightWalker’s advanced technology in a nutshell?

Dr. Pohlhaus: The precise pulse characteristics of the LightWalker allow me to pristinely cut dentin and enamel with amazing speed. LightWalker’s PHAST™ technology is the combination of specific, unique advanced developments in dental laser technology. These include industry leading pulse durations, pulse shape, and preferred wavelengths effectively delivered to target tissues, combined with advanced and proven clinical protocols developed by leading visionary dentists.
A smarter way of treating patients and building your practice

Interview with Dr. Kresimir Simunovic, DMD, MSc

By Sasa Gnezda

Y

ou have been involved in laser dentistry since the early 1990’s. How would you compare the art of laser dentistry back then with the way things are now today?

Dr. Simunovic: Just two words: totally different! In the early 1990's we already had an efficient, but unfortunately anecdotal–based approach to laser dentistry. From this promising start the emerging field moved forward through many years of experimental approaches, leading to extraordinary and objective clinical outcomes. Today, we are living and working in a very privileged era of almost completely evidence–based laser–assisted dentistry, with an exceptionally wide application field. The scientific background and technology have progressed significantly in the past decade, with major impacts on our clinical applications, representing a true historical milestone. I consider it to be a totally new and exciting point of view for everyday clinical experience in the dental profession.

Today, there are no alternatives in dental medicine that are more efficient than the laser for oral hard– and soft–tissue removal and for decontamination. The harmony between settings, the fundamental play of pulse durations and the combination of two leading wavelengths, Er:YAG and Nd:YAG, offer a unique biological, minimally invasive approach to soft and hard oral tissue treatments.

You have given many presentations around the world on the topic of laser dentistry. What would you say are some of the most common misconceptions that dentists have about using lasers in dentistry?

Dr. Simunovic: The need for an investment in additional basic knowledge and a completely new and different perception of tactile and visual feedback create some degree of insecurity in dentists who are not yet experienced with a laser. Questions we often have to deal with include “Why should I change my in–office treatment protocols, which have worked very well in past decades?”

The goal of our presentations and workshops is to show a different way of treatment with laser dentistry. Once our colleagues commit to taking their first steps, they never go back. Seriously!

From a business perspective, how would you make the case that it’s a smart financial decision for a dentist to invest in a laser system?

Dr. Simunovic: The decision is inherently smart, but it has to be considered as a long–term investment, both financially and in terms of personal education. This aspect is often the primary obstacle that has to be discussed and

ABO

UR

T DR. KRESIMIR SIMUNOVIC

Dr. Simunovic is a graduate from the Faculty of Dentistry at the University of Zurich, Switzerland. After practicing general dentistry for 2 years in private practice he joined Zurich University’s Faculty of Dentistry, focusing his studies on the effect of CO2 laser in hard dental tissues and common restorative materials. He received his Doctorate Degree from the same faculty in 1991. The following year he became an assistant at the Department of Oral Dental Surgery, being mainly responsible for radiotherapy and laser therapy patients. In 1997 he established his own dental office focusing mainly on laser–assisted general and aesthetic dentistry, periodontology and oral dental surgery. He is a Board Member for Dentistry of EMLA, an international associate member of the Chicago Dental Society, and member of various Swiss dental societies, among which the Swiss Society of Oral Laser Application. Dr. Simunovic is a LA&HA Expert Clinical Lecturer.

The harmony between settings, the fundamental play of pulse durations and the combination of two leading wavelengths, Er:YAG and Nd:YAG, offer a unique biological, minimally invasive approach to soft and hard oral tissue treatments.
redefined. Dental office devices of this investment level require an almost immediate financial return from the point of view that most of our colleagues are very often both clinicians and entrepreneurs at the same time. Starting with a laser means, at first, a greater investment in time at chair side and in personal and team education, but with the benefit of receiving better, long-lasting profit and an enduring personal and professional enthusiasm in the near future.

What are some of the features of your Fotona LightWalker system that you appreciate the most?

Dr. Simunovic: The LightWalker generation represents a remarkable, and indeed a historical step forward in science and technology for laser-assisted dentistry. The ergonomic benefits, due to the completely new and easy-to-maneuver OPTOflex articulated arm, the interactive adjustable panel with fast menu access and easy, complete clinical guidance, and the choice of ready-to-use Nd:YAG fibers for both sizes at the same time, are truly unique features, which allow for comfortable and efficient chair-side work, fully focusing on the patient’s need, considered as a pillar of evidence-based dentistry.

The improved quality of pulses, including QSP, and the extended range of settings, allow an even more precise and energetically optimized approach to treating tissue, as in PIPS[®], at very low, almost athermal energy levels, and in the extended TwinLight[®] protocols for endodontics and periodontology, as well as in other emerging protocols such as TouchWhite[™] for bleaching and snoreplasty.

Where do you see the future headed with dental laser technology?

Dr. Simunovic: Actually, the future is now. The new LightWalker digitally controlled handpiece (X-Runner) brings a new dimension into the laser-assisted therapeutic tissue approach. It allows a faster, extremely precise and accurate ablation for more extensive hard- & soft-tissue preps, and marks the beginning of a new era of implant surgery, from complete guided implant settings in the near future to surgical release and maintenance.

Looking slightly further ahead, my father, one of the pioneers in LLLT (Low Level Laser Therapy), and I are both looking forward to more improved and evidence-based photobiomodulation and analgesia procedures with both Er:YAG and Nd:YAG.

A Clean and fully intact dentinal tubules after laser treatment.

The future is now. The new LightWalker digitally controlled handpiece (X-Runner) brings a new dimension into the laser-assisted therapeutic tissue approach.

The highest technology dental laser system

Supreme clinical results:
- TwinLight[®] Perio Treatments
- TwinLight[®] Endo Treatments
- No-sutures soft-tissue surgery
- Patient-friendly conservative dentistry
- Pre-sets for over 40 applications

Unmatched simplicity of use:
- Balanced and weightless OPTOflex[®] arm
- Nd:YAG handpiece detection system
- Quantum Square Pulse technology for fast minimally invasive treatments
- X-Runner[™] - the first digitally controlled Er:YAG dental laser handpiece

Journey into a new dental experience with speed, precision and great results. Visit www.fotona.com today!
Experts

Laser: Efficiency and ‘Fun Factor’ Increased

Interview with German Dentists
Frank Herdach, DDS, Alexandra Deutsch, DDS and Alexander Kelsch, DDS

By Sasa Gnezda

How did you decide to buy a Fotona laser?

Dr. Herdach & Deutsch: We were invited to a laser workshop in a dental office. During the event the dentist introduced the laser and some real treatments using the laser. Everybody was impressed by the effects the laser caused in the different tissues. Finally a lecture about the economics of the device closed this very impressive event. We decided immediately to buy our first laser on the same day.

Dr. Kelsch: For years I was not really interested in dental lasers. I therefore was not really aware of the latest impressive developments. In the end, my sales representative Mr. Marcus Dahlinger had to slightly push me to attend a first laser workshop, where I was able to receive all necessary information.

ABOUT DR. ALEXANDRA DEUTSCH

Dr. Alexandra Deutsch graduated from the Eberhard Karls University of Tübingen, Germany, at the Center for Oral and Maxillofacial Surgery. She worked for four years as assistant dentist in specialized practice covering the entire range of orthodontic treatments in Stuttgart. Her postgraduate training was in Orthodontics with a focus on invisible dental corrections, aesthetic orthodontics.

Dr. Deutsch is a certified Laser Safety Officer of the German Society for Laser Dentistry, with expert knowledge in health service facilities and a special emphasis on applications of laser technology in dentistry. She also worked for eight years as a medical technician in the University of Würzburg’s Clotten microbiological laboratory in Freiburg and in the bacteriology laboratory in Herman. Dr. Deutsch is a member of various German and international societies.

ABOUT DR. FRANK HERDACH

Dr. Herdach received his license to practice dentistry from the Eberhard Karls University of Tübingen, Germany, where he spent five years as a research assistant at the University’s Center for Dental, Oral and Maxillofacial Surgery. He is a certified implantologist and endodontist and has completed 3 years of postgraduate training with the German Society of Prosthetic Dentistry and Biomaterials to qualify as a specialist in Prosthodontics DGPRO.

Dr. Herdach is also an investigator for clinical trials in STZ-DCTC Tübingen and the Robert Bosch Hospital in Stuttgart. He has published articles on topics including emergency dental medicine, laser dentistry, Cercon 3D, implantology, and prophylaxis. He is a member of the German societies for Dental, Oral and Maxillofacial Surgery (DGZMKK), Oral Implantology (DGI), Laser Dentistry (DGL) and others.

HOW DID YOU DECIDE TO BUY A FOTONA LASER?

Dr. Herdach & Deutsch: We were invited to a laser workshop in a dental office. During the event the dentist introduced the laser and some real treatments using the laser. Everybody was impressed by the effects the laser caused in the different tissues. Finally a lecture about the economics of the device closed this very impressive event. We decided immediately to buy our first laser on the same day.

Dr. Kelsch: For years I was not really interested in dental lasers. I therefore was not really aware of the latest impressive developments. In the end, my sales representative Mr. Marcus Dahlinger had to slightly push me to attend a first laser workshop, where I was able to receive all necessary information.
About Dr. Alexander Kelsch

Dr. Kelsch received his degree in dentistry from the University of Heidelberg, Germany, in 1995 and opened his own dental practice in Karlsruhe–Neureut in 1998. He has been active in laser dentistry since 2011 and a dedicated user of Fotona’s LightWalker laser system since 2012, acquiring a second LightWalker for his practice in the following year. Dr. Kelsch is also a trainer and lecturer in the fields of laser dentistry and implantology. He conducts regular workshops throughout Germany as well as at his private practice in Karlsruhe–Neureut.
In the field of dentistry, the vision of developing a digitally controlled laser handpiece has long been seen as an ideal means to enable a significantly higher degree of speed and precision with laser treatments.

With the increased power and performance of modern dental lasers, it was inevitably a question of how soon the first digitally controlled dental handpiece would emerge to take advantage of these advanced capabilities. Handheld Er:YAG laser scanners have been used for many years in the field of dermatology, where they have proven exceptionally effective for a wide range of skin treatments that demand highly precise surface ablation.

The X–Runner® allows for both precise and extensive tissue removal, defined by the choice between three different geometrical shapes: a circle, rectangle and hexagon. These can be highlighted as full ablation areas or only as borders (as a means to carve out just the margins in order to maintain the full integrity of the inner area). The extent of ablation can be incrementally adjusted between 1 to 6 mm, depending on the geometry, with a range of from one to 99 successive passes. The X–Runner® also includes a handy time–saving feature: with a simple change of output shape settings it can also perform as a regular non–contact HO2 handpiece.

A Versatile Handpiece For an Extended Range of Indications

With X–Runner®, many remarkable advantages can be noticed in daily in–office applications – in the preparation of cavities, veneers and partial or full crowns, in oral surgery, especially for soft–tissue management, in orthodontics for the bracket bonding procedure and in implantology for implant release.

The digitally controlled laser handpiece is pushing the boundaries of dentistry and opening up many new treatment possibilities. Forward thinking dental practitioners will be sure to notice that the future of laser dentistry is already here today, and it is small enough to hold comfortably in their hand.

CASE 1: Veneer preparation

An extended and fast mode preparation was performed with the X–Runner® using the predefined veneer prep setting on the LightWalker, followed by a final surface modification. There was no need for local anesthesia. The finished surfaces were bonded instantly, the impression taken, and a couple of days later the lab veneers were integrated into the patient’s smile.

VENeer PREPARATION

Laser source	Er:YAG, 2940 nm (LightWalker AT S, Fotona)
Pulse mode	QSP
Energy	150 mJ
Frequency	15 Hz
Handpiece	X–Runner

CASE 2: Implant release

After the healing period, the soft tissue above an osseointegrated implant was removed by multiple passes, following the preset circular shape and size of the ablation area. A healing abutment was fixed on the fully uncovered implant after the impression was taken. The surgery was performed without need for local anesthesia.

IMPLANT RELEASE

Laser source	Er:YAG, 2940 nm (LightWalker AT S, Fotona)
Pulse mode	LP
Energy	225 mJ
Frequency	20 Hz
Handpiece	X–Runner

Our first experiences with the X–Runner® handpiece provided us with fascinating insights into new, powerful and innovative aspects of Er:YAG laser–assisted dentistry.
High finesse? Low problem!

Fast, minimally invasive treatments requiring high finesse are finally possible thanks to Quantum Square Pulse™ (QSP™) mode Er:YAG dental laser technology.

Extremely high finesse of laser treatment is required, for example, when making hard tissue surface modifications before applying composite fillings. High finesse is also desirable when making fine cuts with controlled bleeding into the soft tissue.

Similarly to achieving high ablation speeds, obtaining high treatment finesse has represented a significant technological challenge. This is due to the fact that short pulses of low energy have suboptimal efficiency and are extremely difficult to generate at sufficiently high repetition rates.

In the QSP mode, a longer laser pulse is divided, i.e., quantized, into several short pulses (pulse quanta). One of the major advantages of the QSP mode is that it significantly reduces the undesirable effects of laser beam scattering and absorption in the debris cloud during hard tissue ablation. Namely, when an ablative laser light pulse is directed onto the tissue an ablation of the tissue starts that leads to the emission of ablated particles above the tissue surface, forming a debris cloud (Fig. 2).

In order to avoid the effects of scattering, the pulse duration should be shorter than the time required for the ablation cloud to develop. At the same time, when using the QSP laser pulse technology, the pulse spacing should be longer than the debris cloud decay time. This ensures that the second pulse does not encounter any cloud remains from the previous pulse (Fig. 4).

In conclusion, the QSP mode excels in preparation times without sacrificing finesse. As well as being an optimal mode for procedures that require high finesse (i.e., tissue treated with high spatial precision and with small or moderate pulse energy and short duration laser pulses at high repetition rates). Extremely high finesse of laser treatment is required, for example, when making hard tissue surface modifications before applying composite fillings. High finesse is also desirable when making fine cuts with controlled bleeding into the soft tissue.

High finesse is particularly desirable in pediatric dentistry and with anxious patients, and QSP mode is the method of choice if we require short preparation times without sacrificing finesse. Also, the noise level generated with this mode is lower than in other currently available laser operating modes, which notably increases the level of comfort of the procedure.

Clinical benefits from the new QSP mode are easily measurable.

One of the major advantages of the QSP mode is that it significantly reduces the undesirable effects of laser beam scattering and absorption in the debris cloud during hard tissue ablation.

In order to avoid the effects of scattering, the pulse duration should be shorter than the time required for the ablation cloud to develop. At the same time, when using the QSP laser pulse technology, the pulse spacing should be longer than the debris cloud decay time. This ensures that the second pulse does not encounter any cloud remains from the previous pulse (Fig. 4).
Laser induced photoacoustics: a root cause revolution

The photon–induced photoacoustic method represents a revolutionary solution for cleaning and disinfecting the root canal system, reaching almost 100% bacterial reduction.

The removal of vital and necrotic pulp tissue, microorganisms and their toxins, and the prevention of reinfection through a hermetic coronal and apical seal, are essential for endodontic success. Clinical experience and research have shown that the use of endodontic irrigants results in ineffective irrigation [Haapasalo, 2010]. Also, currently used instrumentation techniques left 35% or more of the canals’ surface area unchanged [Peters, 2001] and only partially removed vital and necrotic tissues from the entrance of lateral canals and apical ramifications, leaving adjacent tissue inflamed, or infected and associated with periapical disease [Ricucci and Siqueira, 2010].

The main problem of irrigation in endodontics is the fluid–dynamics properties of irrigants in the confined canal space. Because of the inherent taper seen within the canal morphology, deep penetrations of irrigants are more difficult because of the absence of turbulence over much of the canal volume [Gulabivala, 2010]. Both irrigant penetration and biofilm removal may be improved through canal fluid agitation using a close fitting instrument, sonic or ultrasonic activation, or laser. Consequently, the efficacy of NaOCl depends on the means by which free chlorine ions are readily available at the target tissue site.

Comparing passive ultrasonic irrigation (PUI) and laser–activated irrigation (LAI) it was found that tissue dissolution was more pronounced after the use of LAI with sodium hypochlorite and an Er:YAG (2940 nm) laser. [Macedo 2010]. Laser–activated irrigation by the PIPS™ technique was found to generate tremendous turbulence and 3D streaming within the root canals [DiVito and Olivi, 2011]. Laser–activation of NaOCl (PIPS™ technique—Fotona Er:YAG laser) with in vitro infected specimens generated more negative bacterial samples and left less apical bacteria/biofilm than ultrasonic activation (PUI) [Peters, 2011].

Another study confirmed that the combination of Er:YAG laser (PIPS™ technique—Fotona, LightWalker laser) and 6% sodium hypochlorite produced 100% elimination of Enterococcus faecalis from ex vivo infected root canals [Jaramillo, 2011]. Also Laser–activation of EDTA (PIPS™ technique—Fotona Er:YAG laser) of chemomechanically prepared root canals resulted in more cleaning of the root–canal walls and a higher quantity of open tubules in comparison with the traditional irrigation method [DiVito, 2012].

The fact that the PIPS™ photon–induced photoacoustic steaming effectively travels 3–dimensionally in the root canal spaces also makes it advantageous as a treatment modality for removing biofilms associated with periodontal pockets that are in difficult–to–access furcation areas and interproximal vertical defects [DiVito and Lloyd 2012].
Lower heat, more precise cutting and faster healing

Superiority of Er:YAG MAX mode over classical drill for osteotomies

By Asst. Prof. Dr. Dragana Gabric

A recent study of the performance of an Er:YAG laser compared to a surgical drill for osteotomy treatment in oral surgery proved beyond doubt that Er:YAG treatment in bone surgery at specific parameters (MAX mode, Fotona) assures lower heat generation, precise cutting, rapid osseous healing and osteoinduction. Compared to conventional mechanical drills and saws, it provides non-contact and low-vibration intervention, bacteriostasis, less traumatization and decreased bleeding.

The Fotona MAX mode is currently the fastest Er:YAG dental laser ablation mode available. Scanning electron microscopy analysis and chemical and crystallographical changes of the bone tissue after Er:YAG MAX mode laser ablation and drilling were reported at the EAO Annual Scientific Meetings [2, 3]. The complete study was published recently in the Journal for Oral and maxillofacial surgery [3] and in the Photomedicine and Laser Surgery [4].

Overcoming delayed healing and infection

The aim of the studies was to find out if it is possible to avoid the disadvantages associated with the conventional drill, such as extensive heat deposition, a necrotic surface zone, injury of the bone cells, and consequently, delayed healing, infections due to fragments left on the bone surface, and mechanical traumatization.

Holes for fixation screws were performed in 4.6 mm thick bone blocks from porcine ribs using a 1.0 mm wide surgical pilot drill (15000 rpm) and an Er:YAG laser (1000 mJ, 20 W, MAX mode, Fotona). The temperature during the preparation, the removed bone volume, and the time required for the preparation were compared in the study. The cortical and spongiose surfaces of the specimens were examined microscopically and histologically.

The results, which speak for themselves, are summarized below:

Er:YAG Advantages … Compared to Surgical Drill …

Excellent cutting efficiency 2.6 times more bone tissue removed
Short preparation time only 17% of drilling time
Lower temperature 3.8°C lower final temperature
Regular shapes with clear, sharp edges Decreased risk for infection caused by bony particles which remain after drill treatment
No smear layer Increased adhesion of blood elements at the start of the healing process

Optical microscopic observations (10x) of the cortical appearance are shown in figures 1 and 2.

The SEM pictures (figs. 3–6) show the differences between the bone surfaces produced by the Er:YAG laser and the drill.

Compared to conventional mechanical drills and saws, it provides non-contact and low-vibration intervention, bacteriostasis, less traumatization and decreased bleeding.

There was no change in the chemical composition of bone tissue and no thermal modification of hydroxyapatite crystals after Er:YAG ablation.

References

All photos courtesy of the authors.
Treatment Guides
Conservative

Er:YAG – Your First Choice in Cavity Preparation

The Er:YAG laser is the first choice and an ideal tool for performing any cavity preparation without anesthesia and with great precision and safety.

By Dr. Antonis Kallis

Er:YAG

Er:YAG laser energy is highly absorbed by water molecules, rapidly heating a small volume. The vaporization of the water creates high subsurface pressure and leads to an explosive removal of the surrounding mineral. The water content in carious tissue is higher than in healthy tissue, so for the same settings, the laser ablation rate will be higher in carious tissue than in healthy tissue. As we move in to dentin, we lower the energy and frequency settings, since ablation is faster in dentin because of its higher water content. Even lower parameters are required for the final modification to create a retentive surface for the filling material.

No Need For Acid Etching

A 35-year-old female visited our dental clinic complaining about sensitivity to cold food. After examination we noticed the need to replace four old fillings and make two new for the neighboring teeth. The most sensitive was tooth 46 (see Figs. 1–7). We removed the old filling with MAX mode and switched to QSP for caries removal. The cavity appeared very deep, with bleeding in the interdental area, so we proceeded with Nd:YAG for hemostasis. At the end, we irradiated all of the dentin and enamel with QSP for surface modification, without the need for acid etching.

All patients were pleasantly surprised with the use of the laser and felt very happy and comfortable during the procedure.

OLD FILLING REMOVAL

- Laser source: Er:YAG (LightWalker AT 5, Fotona)
- Wavelength: 2940 nm
- Mode: MAX
- Energy: 1000 mJ
- Frequency: 20 Hz
- Handpiece: H02–N

CARIES REMOVAL

- Laser source: Er:YAG (LightWalker AT 5, Fotona)
- Wavelength: 2940 nm
- Mode: QSP
- Energy: 200 mJ
- Frequency: 10 Hz
- Handpiece: H02–N

HEMOSTASIS

- Laser source: Nd:YAG (LightWalker AT 5, Fotona)
- Wavelength: 1064 nm
- Mode: MSP
- Energy: 5 W
- Frequency: 30 Hz
- Handpiece: R21–C3

SURFACE MODIFICATION

- Laser source: Er:YAG (LightWalker AT 5, Fotona)
- Wavelength: 2940 nm
- Mode: QSP
- Energy: 120 mJ
- Frequency: 10 Hz
- Handpiece: H02–N

Figs. 1–3: Old filling removal with MAX and QSP modes
Figs. 4–5: Hemostasis with Nd:YAG
Fig. 6: Surface modification with QSP mode
Fig. 7: Tooth 46 after procedure
Orthodontics

Orthodontic Treatment: Stress Gone With the Light By Prof. Carlo Fornaini

Proper conditioning of the enamel surface is necessary for the bonding of orthodontic brackets to teeth. There has been extensive research to find an alternative conditioning method to replace acid etching, with the aim to overcome its main disadvantage – the potential for producing decalcification.

Er:YAG laser has become recognized as an effective and safe alternative. Laser etching is a painless method that does not involve either vibration or heat.

An in vitro study from the University of Parma, based on strength analysis, showed the same effects with Er:YAG irradiation alone as with acid etching. This was obtained by using a special QSP mode (Fotona, Ljubljana). With this mode a specific surface roughness is achieved with micro–fissures that are ideal for resin penetration. The surface produced by laser irradiation is also acid resistant, which reduces the susceptibility to caries attack. Additionally, the laser method is important in the prevention of decalcification zones around the brackets, particularly in patients with scanty oral hygiene.

In line with the concept of modern minimally invasive dentistry, several techniques have been proposed to prepare a very small surface of enamel. With the introduction of the X–Runner digitally–controlled handpiece (Fotona, Ljubljana) it is very simple to automatically irradiate an area equivalent to the bracket surface.

Additionally, Er:YAG laser is also used for debonding of ceramic and metallic brackets, eliminating the problems associated with conventional bracket removal techniques, such as enamel tear outs, bracket failures and pain.

Endodontics

Taking endo–perio treatments to a whole new level By Prof. Giovanni Olivi

A patient asked for the option to save her teeth that were scheduled for extraction by another dentist. The lower left first and second molars had high mobility (grade 2), were necrotic, with significant probing depths in the buccal aspect. The teeth were diagnosed for endo–perio treatment.

Difficulties with this case included complex radicular anatomy, long anatomical measurements (26 and 27 mm respectively for #36 and 37) and the presence of a deep vertical bone loss in the buccal aspect. After scaling and root planning, the teeth were scheduled for root–canal therapy.

Before each treatment the PIPS™ technique was applied into the periodontal pockets of each tooth for refining the debridement, removal of biofilm from the root surfaces and pocket disinfection. The root–canal treatments were performed using PIPS™–specific irrigation protocols with 5% NaOCl and 17% EDTA. The canals were obturated with a flowable resin sealer (Endoreze Ultradent, South Jordan, UT–USA) and gutta–percha points. A final treatment of the pockets using PIPS™ for disinfection was performed after completing each root canal therapy to remove any extruded sealer or residual biofilm. No post–op symptoms were reported and the mobility of the teeth progressively disappeared up to grade 0. The follow up X–rays performed after 1 and 4 months showed healing in progress for both the teeth.

LightWalker AT laser device with contact H14–C handpiece and PIPS™ fiber tip was used for the treatment.

No post–op symptoms were reported and the mobility of the teeth progressively disappeared up to grade 0.
Surgery

QSP Mode for Fascinating Results in Soft–Tissue Surgery

By Asst. Prof. Dr. Dragan Gabric

Many situations in oral surgery require the removal of pathological, changed or healthy soft tissue. There are many treatments for oral lesions, including the use of various medications, change of lifestyle, surgical excision, cryosurgery or laser ablation and excision. Classical excision with a scalpel is performed under local or general anesthesia, depending on the size of the lesion and the general health of the patient, and the treatment can be fairly invasive, with a lengthy post-operative recovery period.

Lasers have long been studied as high-potential surgical tools due to their coagulative properties and reduced edema and pain. The Er:YAG laser in particular appears to be a very promising tool for excision and ablation of healthy soft tissue as a necessary step in the treatment process.

X–Runner: Precision is His Middle Name

The recently introduced X–Runner digitally controlled dental handpiece provides the possibility to guide the Er:YAG laser beam automatically in a required shape and dimension. Such precise coverage of large areas is highly appreciated by surgeons and dentists.

When bloodless surgery is preferred, the laser’s LP and VLP modes (with longer pulse durations) allow for a greater thermal effect. In this case, part of the energy is used for effective ablation and the rest for coagulation of the surrounding soft tissue, observed as a slight whitish tissue color around the ablated area.

In the following presented cases, a newer QSP mode was used, by which the ablation is very precise and heals even faster than with the LP mode, due to the minimally invasive delivery of short, low–energy pulses of high frequency.

After the treatment of leukoplakia and hyperpigmentation with Er:YAG, a perfect healing process with no recurrence was observed.

CASE 1: Leukoplakia removal

In the following case of a 30–year–old female patient with leukoplakia (7 mm x 4 mm), a total of 8 X–Runner passes were necessary to ablate the lesion completely. There was a complete absence of bleeding and no observation of any thermal effects. No analgesic was prescribed.

LEUKOPLAKIA REMOVAL

Laser source: Er:YAG (LightWalker AT S, Fotona)
Wavelength: 2940 nm
Mode: QSP
Energy: 120 mJ
Frequency: 20 Hz
Handpiece: X–Runner (4 mm x 4 mm, rectangle)

CASE 2: Depigmentation

Hyperpigmentation of the gingiva is caused by melanin pigmentation and represents an aesthetic problem. In the case of the following 32–year–old female patient, the treatment was paused after each pass to examine the depth of ablation. A light water spray was used during the procedure. The gingiva healed in 5 days.

DEHYPERPIGMENTATION

Laser source: Er:YAG (LightWalker AT S, Fotona)
Wavelength: 2940 nm
Mode: QSP
Energy: 120 mJ
Frequency: 20 Hz
Handpiece: X–Runner (3 mm diameter, circle)

Facial aesthetics

Inside Out: Impressive Development in Facial Tightening

By Dr. Adrian Gaspar and Dr. Gustavo Alfaro Gasti

Increasingly deep nasolabial folds and perioral wrinkles are the most significant signs of facial skin aging. Facial skin rejuvenation has long been the most highly desired aesthetic procedure. The demand for non–downtime procedures has guided researchers to developed newer non–invasive procedures based on thermal effects that result in collagen remodeling.

A novel non–invasive method that combines high efficacy with minimal downtime and minimal chance of side effects was introduced using the Er:YAG laser in a non–ablative SMOOTH mode.

Shrinking up to 30% of the tissue volume

The intraoral treatment with Er:YAG enables tissue heating to well–controlled temperature levels between 45°C and 65°C in the upper layers of the dermis (around 500 µm deep), resulting in immediate shrinkage of the tissue, which can be as large as 30% of the tissue volume. An additional effect is achieved by the mechanical pull of deeper tissue layers following the shrinkage of upper, photo–thermally processed tissue layers. The long lasting tightening effect can be attributed to neo–collagenesis, which further contributes to the improvement of thickness and elasticity in the facial skin.

Immediate Wrinkles Reduction

In the following case, 9 patients with different grades of perioral wrinkle severity were treated with Er:YAG SMOOTH mode. The first step of the treatment included tightening of the cheeks, diminishing of the nasolabial fold and lifting of the labial commissure. The second step involved a raising of the philtrum and cupid bow lip augmentation. Six passes were delivered to the intraoral area, each shot in one spot with no overlapping.

A significant reduction of perioral wrinkles was observed in all treated patients. The reduction of wrinkles was detected immediately after the intraoral treatment (a result of immediate collagen remodeling), with no adverse effect such as additional erythema or edema. The therapy was very well tolerated by all patients, with no discomfort.

This method is non–invasive, safe and very effective with no down time or adverse effects.

INTRAORAL FACIAL TIGHTENING

Laser source: Er:YAG (LightWalker AT S, Fotona)
Wavelength: 2940 nm
Pulse duration: SMOOTH

Fig. 1: Overview of the two–step procedure showing the treated area inside the mouth.

Fig. 2: Reduction of the nasolabial folds in a 39–year–old–woman after treatment with Er:YAG in non–ablative SMOOTH mode.

Fig. 3: Significant reduction of perioral wrinkles achieved with five sessions of intraoral Er:YAG treatment. Before (left) and 60 days after (right) the treatment.
A patient visited our office on 19 January 2010 with a buccal perio abscess on the lateral left inferior incisor with suppuration and bleeding, elevated mobility and pain. A TwinLight® perio procedure was performed with subsequent re-establishment of full function, normal physiological mobility and an absence of inflammation or infection.

On 19 July a relapse with endo involvement as a buccal combined perio/endo abscess was resolved with a double TwinLight® endo & perio treatment, followed by a second endo session on 3 August and laser-assisted filling on 12 August. The situation has been stable since 12 August 2010, with the patient on a three-month recall (Fig.1). Results of follow-up recalls and x-rays show clear new bone and soft-tissue regeneration, pocket reduction and disappearance of any inflammation. Full functionality is restored.

Periodontics

Double treatment power with TwinLight® therapy

By Dr. Kresimir Simunovic

Fig. 1: X-ray follow-ups from first visit to latest recall

Fig. 2a: Er:YAG step

Fig. 2b: Nd:YAG step

Fig. 3a: Nd:YAG step

Fig. 3b: Er:YAG step

Fig. 3c: Nd:YAG step

TwinLight® perio parameters for debridement (Fig. 3b):
- Laser source: Er:YAG
- Wavelength: 2940 nm
- Mode: SP
- Energy: 50 mJ
- Frequency: 40 Hz
- Handpiece: H14-C with Varian 500/14
- Water/Air Spray Settings: 5/2

TwinLight® perio parameters for final decontamination (Fig. 3c):
- Laser source: Nd:YAG
- Wavelength: 1064 nm
- Mode: VLP
- Power: 2 – 4 W
- Frequency: 20 Hz
- Handpiece: R21–C3

TwinLight® perio parameters for pocket decontamination (Fig. 3a):
- Laser source: Nd:YAG
- Wavelength: 1064 nm
- Mode: MSP
- Power: 2–4 W
- Frequency: 20 Hz
- Handpiece: R21–C3

TwinLight® endo parameters (PIPS™ protocol) for laser-assisted mechanical root-canal opening and instrumentation, cleansing and first decontamination (Fig. 2a):
- Laser source: Er:YAG
- Wavelength: 2940 nm
- Mode: SSP
- Energy: 10 mJ
- Frequency: 15 Hz
- Handpiece: H14-C
- Water/Air Spray Settings: none
Implantology

The TwinLight approach to peri-implantitis

Peri-implantitis is one of the major complications in implantology. As the number of dental implants being placed increases, reported cases of peri-implantitis are becoming more frequent. By Dr. Ilay Maden and Dr. Zafer Kazak

The most beneficial usage of the Er:YAG laser in implantology is for treatment of peri-implantitis; with Er:YAG, it is possible to clean the granulation tissues, both on the bone surface and implant surface. This is done through decontamination of the site, which is the main purpose of peri-implantitis treatments.

In this case, a removable prosthetic with two ball attachments was planned. Due to the patient’s request the implants were immediately loaded, which most probably is the reason for the resorption seen around the implant on the right lower jaw (Fig. 1).

The site was directly accessed to clean the granulation tissue and disinfect the implant surface with Er:YAG laser, while deep disinfection and biomodulation were executed with Nd:YAG laser (Fig. 2). The defect was augmented with synthetic bone substitute.

After 3 years of follow up with very good healing (Fig. 3), the patient demanded a fixed prosthetic, which was delivered with an additional placement of implants in both jaws. X-rays taken 5 years after the peri-implantitis treatment can be seen in Fig. 4. Two more implants were placed distally when the patient could afford more treatments after a year.

There are a number of advantages of using lasers in this type of case. One of them is that there is no mechanical, chemical or any other means of trauma while removing the granulation tissue around the implant – neither to the implant nor to the bone tissue. In addition to being safe, both wavelengths are known to promote healing by disinfecting and biomodulating the tissue. The erbium laser targets the water content to remove the granulation tissue selectively, due to its long chosen pulse duration and lower peak power while ablating the microorganisms on the surface of the bone. Shorter pulses are used on the surface of the implant to avoid thermal effects, but with lower energies, so as to not have a too high peak power and thereby damage the surface. With short pulses and higher peak power (higher energy), we can create bleeding spots on the bone to improve healing of the augmentation material.

The penetration of Nd:YAG through bone helps the achievement of deep disinfection and biomodulation. Care should be taken to avoid lasering the implant surface with Nd:YAG because the absorption is high in titanium and could cause a rise in temperature. It is also important to have a fast, sweeping motion with high suction to avoid heat accumulation on one spot. Too much bleeding would block the penetration of the Nd:YAG laser. Nd:YAG can also be used on the incision line, vestibular, the oral side of the surgical site and extra orally after suturing, and bi-daily for faster and better healing, with less pain and swelling.

Settings

<table>
<thead>
<tr>
<th>Degranulation:</th>
<th>Er:YAG, 160 mJ, 10 Hz, LP, 1.3 mm cylindrical tip, H14-C handpiece, W/A: 6/4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant surface disinfection:</td>
<td>Er:YAG, 80 mJ, 10 Hz, MSP, non-contact, H02-C handpiece, W/A: 6/4.</td>
</tr>
<tr>
<td>To create bleeding spots on the bone:</td>
<td>Er:YAG, 160 mJ, 15 Hz, non-contact, H02-C handpiece, W/A: 6/4.</td>
</tr>
<tr>
<td>Deep disinfection of the bone (no lasering of the implant with Nd:YAG):</td>
<td>Nd:YAG, 1.5 W, 15 Hz, MSP, non-contact, R21-C handpiece, 300 µm fiber.</td>
</tr>
<tr>
<td>Biomodulation:</td>
<td>Nd:YAG, 0.5 W, 10 Hz, VLP, non-contact, R21-C handpiece, 300 µm fiber.</td>
</tr>
</tbody>
</table>

In addition to being safe, both wavelengths are known to promote healing by disinfecting and biomodulating the tissue.
Snoring is a common problem that occurs when the flow of air through the mouth and nose is physically obstructed. Studies estimate that 45% of men and 30% of women snore on a regular basis and that just about everyone snores occasionally.

New Er:YAG Laser Treatment of Sleep–disordered Breathing

Due to numerous limitations, high treatment risks, side effects and the low treatment success rates of classical non-surgical and surgical procedures, many people decide not to treat their snoring problems. However, since snoring can cause many health complications, it may result in a life threatening disorder and eventually in premature death.

Recently, a new minimally invasive and more effective method for the treatment of snoring and apnea, known as NightLase®, was presented. The method uses Er:YAG laser light for nonablative thermal heating of the treated areas, which causes shrinkage of the collagen fibers and subsequently opens up the air flow in the mouth and nose and decreases snoring and apnea problems.

In the presented case, a patient with anatomic characteristics of Mallampati Class IV underwent NightLase treatment. A nonablative tightening of the anterior pillar, soft palate and uvula with the lower part of the hard palate, posterior pillars and tonsils and lateral and bottom of the tongue was performed three times in a period of 45 days. The number of delivered treatment pulses was 15000.

90% Success Rate After Three Treatments

The outcome of the treatment was very beneficial for the patient and the success rate after three treatments was 90%. The patient also reported that he breathed much easier, being more alert and focused. Compared to more aggressive surgical and also nonsurgical methods, NightLase achieved significantly better results without side effects or risk for the patient.

Examination prior to the treatment and good anamnesis is essential for achieving a positive result. In addition to this, we also have to consider the exclusion criteria. For example, in cases where the patient is overweight, a dietician can be very beneficial in helping to solve the snoring problem.
INTERNATIONAL WORKSHOPS IN LASER DENTISTRY

- led by leading international laser experts
- live demos and hands-on
- explore all areas of laser dentistry
- great experience-sharing opportunity

Check out dates and available spaces at: www.laserandhealth.com

The Laser and Health Academy is the coordinator of the EU regional Competency Center for Biomedical Engineering, supported by the European Regional Development Fund. The consortium’s partners include key institutions of higher education, industrial representatives, and experts in the field of biomedical engineering and medicine that wish to expand upon their existing avenues of cooperation to achieve new levels of synergy. The program of the competency center is focused on the research and development of products and applications that reduce the invasiveness of medical treatments and increase the reliability and accuracy of diagnostic procedures.

www.bmecenter.com/en/